Meine Merkliste
my.bionity.com  
Login  

Wie Proteininteraktionen den programmierten Zelltod steuern

18.07.2017

Fehlfunktionen in diesem Schutzmechanismus des Körpers stehen im Zusammenhang mit Krebs und neurodegenerativen Erkrankungen.

Ein Forscherteam hat neue Einblicke in ein Proteinnetzwerk erlangt, das den programmierten Zelltod, auch Apoptose genannt, steuert. Die sogenannten Bcl-2-Proteine sind schwer zu untersuchen, da sie sich zwischen der wässrigen Zellflüssigkeit und der ölähnlichen Membran hin- und her bewegen. Nur wenige Methoden sind geeignet, um Proteininteraktionen in beiden Umgebungen zu analysieren.

Mit einer besonderen Form der Spektroskopie entschlüsselte das Team das komplexe Zusammenspiel von drei Komponenten des Netzwerks. In der Zeitschrift „Nature Communications“ berichten die Autoren der Universität Tübingen, der Ruhr-Universität Bochum, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, des Deutschen Krebsforschungszentrums und der Universität Konstanz über ihre Ergebnisse.

Selbstmordprogramm in Zellen

„Unsere Gesundheit ist davon abhängig, dass Zellteilung und Zelltod streng reguliert werden“, sagt Dr. Stephanie Bleicken, die kürzlich von der Universität Tübingen in die Bochumer Arbeitsgruppe für Elektronenspinresonanz-Spektroskopie und zum Exzellenzcluster Resolv wechselte. Funktionieren diese Mechanismen nicht, können neurodegenerative Krankheiten oder Krebs entstehen. „Die Apoptose, eine Art Selbstmordprogramm der Zellen, ist ein wichtiger Schutzmechanismus des Körpers, um beschädigte, überalterte oder nicht mehr benötigte Zellen zu entsorgen“, so Bleicken weiter.

Die Bcl-2-Proteinfamilie bestimmt, wann die Apoptose eingeleitet wird. Manche Mitglieder lösen Prozesse in der Zelle aus, die zum Zelltod führen, zum Beispiel indem sie Poren in der Membran der Mitochondrien, also den Kraftwerken der Zelle, öffnen. Durch diese Poren können bestimmte Stoffe die Mitochondrien verlassen; dann ist die Apoptose nicht mehr aufzuhalten. Andere verhindern dies und wirken damit dem Zelltod entgegen. Das Zusammenspiel innerhalb der Bcl-2-Familie ist daher entscheidend, um die Apoptose zu verstehen.

Ausschnitt aus dem Netzwerk betrachtet

In der neuen Studie beleuchteten die Wissenschaftler mithilfe der Fluoreszenz-Kreuzkorrelations-Spektroskopie einen Ausschnitt aus dem Bcl-2-Netzwerk. Für ihr vereinfachtes Labormodell stellten sie drei Hauptkomponenten des Proteinnetzwerks her und untersuchten sie in einer Umgebung, die die Zelle in groben Zügen nachbildet.

„Lebende Zellen bestehen aus Tausenden von unterschiedlichen Molekülen, die unzählige Interaktionen eingehen und zahllose Reaktionen auslösen können“, sagt Prof. Dr. Ana García-Sáez von der Universität Tübingen. „Um einzelne Komponenten in diesem komplexen Netzwerk zu verstehen, hilft es, sie zunächst in stark vereinfachten Umgebungen zu betrachten, zu der dann immer neue Komponenten hinzugegeben werden können.“ Genau das taten die Forscher. Sie analysierten die Proteine in Umgebungen, die die Zellflüssigkeit oder die Mitochondrienmembran nachbildeten.

Unterschiedliche Interaktionen in Membran und Zellflüssigkeit

Das Zusammenspiel der drei Proteine hing stark von ihrer Umgebung ab. In Membranen waren andere Interaktionen möglich als in der Zellflüssigkeit. „Das war eine wichtige Erkenntnis, weil die Interaktionen in der Membran im Wesentlichen darüber entscheiden, ob der Zelltod eingeleitet wird“, erklärt García-Sáez. „Diese Umgebung ist technisch aber viel schwieriger zu erforschen als die Zellflüssigkeit.“

Da die Wissenschaftler Proteine in beiden Umgebungen vergleichen konnten, konnten sie auch frühere Befunde, die zunächst als widersprüchliche Ergebnisse interpretiert worden waren, in Einklang bringen. „Die Bcl-2-Proteine regulieren die Apoptose, die wiederum eng mit Krankheiten wie etwa Krebs verbunden ist. Wenn wir die Funktion der Proteine genauer verstehen, bilden sie günstige Ansatzpunkte für die Entwicklung neuer Medikamente“, sagen die Forscherinnen.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Wie Sauerstoff das Herzstück wichtiger Enzyme zerstört

    Neue Erkenntnisse sollen helfen, Wasserstoff produzierende Enzyme künftig vor schädlichem Sauerstoff zu schützen – interessant für die Biotechnologie. Bestimmte Enzyme, wie die Wasserstoff produzierenden Hydrogenasen, sind in Anwesenheit von Sauerstoff instabil. Woran das liegt, haben Forsc ... mehr

    Bakterien einfach aufspießen

    Nanosäulen auf der Oberfläche von Implantaten verhindern, dass sich Bakterien darauf vermehren können. Ein Team der Materialforschung lässt sie wachsen. Tausende von Patienten müssen sich jedes Jahr Operationen und einer Antibiotikatherapie unterziehen, weil Keime ihr Implantat besiedelt ha ... mehr

    Warum es künstliche Intelligenz eigentlich noch nicht gibt

    Die Prozesse, die der künstlichen Intelligenz heute zugrunde liegen, sind eigentlich dumm. Bochumer Forscher arbeiten daran, sie schlauer zu machen. Umbruch, Revolution, Megatrend, vielleicht auch Gefahr: Das Thema künstliche Intelligenz durchdringt alle Branchen, beschäftigt sämtliche Medi ... mehr

  • Firmen

    Ruhr-Universität Bochum (RUB)

    Wir sind mit rund 100 Studiengängen in den Ingenieur-, Natur-, Geistes-, Sozialwissenschaften und der Medizin eine der vielseitigsten und mit ca. 35.000 Studierenden, 460 Professoren und 2.400 Wissenschaftlern eine der größten und leistungsstärksten Universitäten in Deutschland. mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.