Meine Merkliste
my.bionity.com  
Login  

Wie verschiedene Antibiotika gemeinsam wirken

12.06.2019

stevepb, pixabay.com, CC0

Biophysiker erforschen das Potenzial von Kombinationen verschiedener Antibiotika, um u.a. Resistenzen vorzubeugen (Symbolbild).

Antibiotika sind in der heutigen Medizin ebenso wichtig wie problematisch. Einerseits stellen sie für viele Erkrankungen nach wie vor die einzige effektive Therapiemöglichkeit dar, andererseits steigt die Zahl der resistenten Krankheitserreger, wovor die WHO bereits vor einigen Jahren eindringlich warnte. Zuletzt geriet die Entwicklung neuer Antibiotika aufgrund wirtschaftlicher Überlegungen ins Stocken. Das Problem wird durch den großflächigen Einsatz von Antibiotika in der Tierhaltung noch verschärft. Einen Ausweg aus dem Dilemma könnte ein genaueres Verständnis der bestehenden Antibiotika darstellen. Eine Gruppe um den Biophysiker Tobias Bollenbach entwickelt in einem laufenden, vom Wissenschaftsfonds FWF finanzierten Grundlagenprojekt neue Methoden, um die Wirkung von Kombinationen verschiedener Antibiotika genauer zu verstehen.

Wirkung ohne genaues Verständnis

„Kombinationen von Medikamenten werden in der klinischen Anwendung seit langer Zeit genutzt, etwa bei der Behandlung von HIV oder Krebs. Das gilt auch für Antibiotika. Manche haben gemeinsam eine deutlich stärkere Wirkung als man erwarten würde. Warum das so ist, ist in den allermeisten Fällen sehr schlecht verstanden“, sagt Tobias Bollenbach. Das liege daran, wie Medikamente entwickelt würden. Wichtig sei vor allem die Wirkung selbst und nicht das genaue Verständnis, wie diese zustande kommt. „Häufig weiß man, wo das Medikament in der Zelle primär wirkt, es ist aber oft unklar, ob es noch andere relevante Mechanismen gibt“, so Bollenbach.

Der Forscher und sein Team haben daher die Grundlagen genauer unter die Lupe genommen: Statt Antibiotika an bekannten Krankheitserregern zu testen, haben sie für ihre Studie ein einfaches Modell-Bakterium verwendet. Die Rede ist von Escherichia coli, kurz „E. coli“, das im Darm von Mensch und Tier vorkommt und im Normalfall kein Krankheitserreger ist. Antibiotika hemmen aber das Wachstum verschiedenster Bakterien, weshalb E. coli als Modell-Organismus geeignet ist. „Bakterien können wir im Labor einfach unter kontrollierten Bedingungen wachsen lassen“, sagt der Forscher. „Das erleichtert es uns, systematisch Untersuchungen zu machen.“

Zehntausende Kombinationen

Bollenbachs Ziel ist, systematisch möglichst viele verschiedene Kombinationen von zwei, aber auch drei Antibiotika zu testen. Dazu legte man Kulturen mit E. coli in einem Raster von „Trögen“ an – kleinen Gefäßen, in denen die Bakterien wachsen können. „Wir verwendeten eine Platte mit 96 Trögen und testeten in jedem davon eine andere Kombination von Antibiotika“, erklärt Bollenbach. Seine Gruppe arbeitete mit bis zu 40 dieser Platten parallel. Die Vorgänge wurden zum Teil automatisiert und die Aufgaben auf Roboter übertragen – etwa das Überführen der Platten aus dem Brutkasten in ein Diagnosegerät. So sind größere Experimente möglich.

Wichtig sei die verbesserte Systematik, sagt Bollenbach: „Mit Trial and Error kommt man hier schnell an die Grenzen. Bei Antibiotika gibt es ungefähr zehn verschiedene Wirkungsmechanismen. Alle unterschiedlichen Varianten mitgezählt, gibt es einige hundert verschiedene Antibiotika. Diese paarweise zu kombinieren ist gerade noch möglich, wir sprechen von zehntausenden Experimenten. Sobald aber ein dritter Wirkungsmechanismus dazukommt, explodiert die Zahl.“ Darum sei es wichtig, ein genaueres Verständnis der Mechanismen zu bekommen. „Erst dann lässt sich realistisch vorhersagen, welche Kombination besonders gut funktionieren wird“, erklärt der Forscher.

Welche Gene für Antibiotika relevant sind

EC hat als Modellorganismus einen weiteren Vorteil, den Bollenbach nutzten konnte: Jedes der rund 4500 Gene von E. coli lässt sich einzeln ein- oder ausschalten. Es gibt Sammlungen von E. coli-Stämmen, wo bei jedem Stamm ein anderes Gen ausgeschaltet wurde. Bollenbachs Gruppe untersuchte, welche dieser Gene die Bakterien sensibler oder robuster gegen bestimmte Antibiotika machen. „Wir haben systematisch nach diesen Genen gesucht“, sagt der Forscher. Das sei für Antibiotika-Kombinationen besonders schwierig gewesen. Eine neu entwickelte Systematik wurde publiziert und kann als Startpunkt für weitere Experimente dienen.

Das Resistenzproblem entschärfen

„Das Problem mit den Antibiotika-Resistenzen ist sehr ernst“, bestätigt Bollenbach, der betont, dass es sich trotz der gesellschaftlichen Relevanz des Themas um Grundlagenforschung handelt, die das Verständnis verbessern soll. Antrieb dafür ist die Aussicht, Kombinationen zu finden, die auch gegen resistente Bakterien wirken. Bakterien können zudem daran gehindert werden, überhaupt Resistenzen zu entwickeln. So gibt es Arbeiten, die zeigen, dass Wirkstoffe, die eigentlich „antagonistisch“ sind, also gemeinsam schwächer wirken als einzeln, es Bakterien schwerer machen, Resistenzen zu entwickeln. „Das Potenzial von Kombinationen verschiedener Antibiotika ist in dieser Hinsicht riesig“, so der Forscher. „Das Resistenzproblem wird sich auf diesem Weg entschärfen lassen. Und auch kurzfristige Lösungen auf bestimmte Probleme sind absehbar.“

Originalveröffentlichung:

Mitosch K, Rieckh G & Bollenbach T; "Temporal order and precision of complex stress responses in individual bacteria"; Molecular Systems Biology; 15 (2), 2019

Fakten, Hintergründe, Dossiers
Mehr über Uni Köln
  • News

    Wie Kälte Fruchtbarkeit und Lebensspanne erhöht

    Eine moderate Absenkung der Körpertemperatur kann zu einer deutlichen Verlängerung der Lebensdauer führen. Um den Alterungsprozess des gesamten Organismus bei Kälte zu verzögern, kommunizieren Stammzellen der Keimbahn mit dem Rest des Körpers über das Hormon Prostaglandin, wie David Vilchez ... mehr

    Wie ein schwimmender Donut

    Forscher unter Kölner Leitung haben entdeckt, dass sich der Einzeller Idionectes vortex durch eine rotierende Geißel fortbewegt. Das Besondere daran ist, dass das Flagellum, wie die fadenförmige Geißel wissenschaftlich heißt, sich zu einem Ring biegt und in sich rotiert. Diese Rotation kann ... mehr

    Gold macht im CT unsichtbare Oberflächen sichtbar

    Während die dreidimensionale Darstellung und Analyse von biologischen Proben mit Hilfe von Computertomographie (CT) heute Routine sind, stellten gerade die feinen Oberflächendetails vieler Organismen bisher große Schwierigkeiten an die Visualisierung. Wissenschaftler der Universitäten Köln ... mehr

Mehr über Fonds zur Förderung der wissenschaftlichen Forschung
  • News

    Wie Darmbakterien depressiv machen

    Eine Forschungsgruppe aus Graz erforscht das komplexe Wechselspiel zwischen Darm und Gehirn. Nun konnte das Team in einem vom Wissenschaftsfonds FWF finanzierten Projekt neue Erkenntnisse darüber gewinnen, wie Darmbakterien, das Immunsystem und Übergewicht zu psychischen Erkrankungen führen ... mehr

    Wie „gutes Cholesterin“ noch fleißiger wird

    Damit ein Tumor wachsen kann, braucht er Cholesterin zum Aufbau neuer Zellwände. Gleichzeitig gilt das sogenannte „gute“ Cholesterin oder High-Density-Lipoprotein (HDL) als Schutzfaktor gegen Krebs. Schrödinger-Stipendiat Raimund Bauer untersuchte die Wirkung von HDL auf Tumore genauer und ... mehr

    Zellrecycling gegen Arterienverkalkung

    Kalkablagerungen in den Bauch- und Beinschlagadern – die sogenannte Mediaverkalkung – ist eine häufige Komplikation bei Nierenversagen oder Diabetes mellitus. Mit Unterstützung des Wissenschaftsfonds FWF wurde untersucht, wie Zellkulturen und Mäuse auf mangelhafte Blutreinigung reagieren un ... mehr

  • Verbände

    Fonds zur Förderung der wissenschaftlichen Forschung (FWF)

    Der FWF - Fonds zur Förderung der wissenschaftlichen Forschung - ist Österreichs zentrale Einrichtung zur Förderung der Grundlagenforschung. Er ist allen Wissenschaften in gleicher Weise verpflichtet und orientiert sich in seiner Tätigkeit ausschließlich an den Maßstäben der internationalen ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.