Meine Merkliste
my.bionity.com  
Login  

Wie Pflanzen mit Pilzen Freundschaft schließen

Gen MIG1 steuert Entwicklung der Wurzelrinde und ermöglicht Symbiose mit arbuskulären Mykorrhiza-Pilzen

19.09.2016

Carolin Heck/KIT

Unter dem Mikroskop (konfokalmikroskopische Aufnahme): Der AM-Pilz (grün) erreicht die innere Wurzelrinde und bildet dort die namensgebenden Arbuskeln (s. Pfeil; baumartige Struktur, Latein arbor = Baum).

Viele Pilze schädigen Pflanzen und töten sie. Aber es gibt auch pflanzenfreundliche Pilze: Die meisten Landpflanzen leben in einer engen Gemeinschaft mit arbuskulären Mykorrhiza-Pilzen (AM-Pilzen), die ihr Wachstum fördern. Wie diese Symbiose zustande kommt, untersuchen Forscher der Gruppe „Molecular Phytopathology“ am Karlsruher Institut für Technologie (KIT). Die Wissenschaftler haben nun ein Gen identifiziert, das von den AM-Pilzen gezielt aktiviert wird und die Entwicklung der Pflanzenwurzel beeinflusst: Der GRAS-Transkriptionsfaktor MIG1 sorgt dafür, dass mehr und größere Wurzelrindenzellen entstehen.

Die meisten Landpflanzen leben in einer Symbiose mit AM-Pilzen – in einer engen Beziehung, von der beide Seiten profitieren: Die AM-Pilze helfen den Pflanzen, Nährstoffe wie Stickstoff und Phosphat sowie Wasser aus dem Boden zu ziehen, schützen sie vor Schädlingen und fördern darüber hinaus das Pflanzenwachstum, indem sie die Wurzelentwicklung beeinflussen. Als Gegenleistung versorgen die Pflanzen die AM-Pilze mit Kohlehydraten, die sie durch Photosynthese erzeugen. Die Symbiose verbessert Wachstum und Gesundheit der Pflanzen auch unter schwierigen Bedingungen, wie nährstoffarme Böden und Stress. Kontrolliert kultiviert, könnten Gemeinschaften von Kulturpflanzen mit arbuskulären Mykorrhiza-Pilzen helfen, Dünger und Pestizide einzusparen, und somit zu einer nachhaltigen Landwirtschaft beitragen.

Doch wie kommt die freundschaftliche Beziehung zwischen Pflanze und Pilz überhaupt zustande? Dieser Frage gehen Wissenschaftler der Gruppe „Molecular Phytopathology“ unter Leitung von Professorin Natalia Requena am Botanischen Institut des KIT nach. In grundlegenden Forschungsarbeiten untersuchen sie die molekularen Prozesse bei der Ausbildung der Symbiose. Was die Förderung des Pflanzenwachstums über die Wurzelentwicklung betrifft, haben die Wissenschaftler nun ein Pflanzengen identifiziert, das von den AM-Pilzen gezielt aktiviert wird – den GRAS-Transkriptionsfaktor MIG1, der die Größe der Wurzelrindenzellen bestimmt. Anhand von Medicago truncatula, einer Pflanzenart aus der Gattung der Schneckenklees, haben die Karlsruher Forscher die Rolle von MIG1 untersucht.

„Die Ausbildung einer Symbiose mit arbuskulären Mykorrhiza-Pilzen verlangt von Pflanzen eine außergewöhnliche und genau gesteuerte Anpassung“, erklärt Professorin Natalia Requena. „Die Pflanze aktiviert ihre genetischen Programme für eine solche Symbiose noch vor dem ersten physischen Kontakt mit dem Pilz, sobald sie einen von diesem abgesonderten Signalstoff empfängt.“ Im Folgenden liegt die Kontrolle der Ausbildung der Symbiose vorwiegend bei der Pflanze. Die Besiedlung von Pflanzenwurzeln durch AM-Pilze ist auf das Abschlussgewebe und die Rinde beschränkt. Dabei dringen die Hyphen (Zellfäden) des Pilzes tief in die Wurzelrinde ein und bilden weitverzweigte Strukturen, sogenannte Arbuskeln. Die Pflanze umhüllt die Arbuskeln mit einer eigens synthetisierten periarbuskulären Membran (PAM).

Bei der Regulierung der Wurzelkolonisation und der Bildung von Arbuskeln übernehmen bestimmte Proteine, die einer pflanzenspezifischen Familie von Proteinen – der GRAS-Protein-Familie – angehören, wesentliche Funktionen. Sie wirken als Transkriptionsfaktoren, welche die Aktivität anderer Gene steuern, das heißt sie an- oder ausschalten. Beispielsweise ermöglicht das Protein RAM1 die Verzweigung der Arbuskeln, RAD1 ihre Erhaltung, und NSP1, NSP2 und DIP1 kontrollieren den allgemeinen Kolonisationsvorgang. Die Forscherinnen und Forscher um Professorin Natalia Requena identifizierten nun den Transkriptionsfaktor MIG1 (Mycorrhiza Induced GRAS 1). Dessen stärkste Expression ist in Zellen zu beobachten, die Arbuskeln enthalten. MIG1 verändert die Wurzelrindenentwicklung wesentlich, indem es dafür sorgt, dass mehr und größere Wurzelrindenzellen entstehen, sodass der Durchmesser der Wurzeln insgesamt deutlich zunimmt. Umgekehrt führt eine Herunterregulierung von MIG1 zu missgebildeten Arbuskeln.

Fakten, Hintergründe, Dossiers
  • Stickstoff
  • Nährstoffe
  • Medicago truncatula
  • arbuskuläre Mykorrh…
  • Phosphate
  • Pflanzengene
Mehr über KIT
  • News

    Putzen mit Bakterien?

    Die Sonnenstunden werden mehr, die Temperaturen steigen – und der Frühjahrsputz steht an. Derzeit geraten Mittel mit Bakterien in Mode: Die probiotischen Reiniger enthielten „freundliche“ Mikroorganismen, die Schmutz, Staub und schädliche Bakterien auf natürliche Weise beseitigten, versprec ... mehr

    Versteckte Ordnung in der Unordnung

    Den Raum in Zellen mit optimalen geometrischen Eigenschaften einzuteilen, ist eine zentrale Herausforderung in vielen Bereichen der Wissenschaft und Technik. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) mit Kollegen aus mehreren Ländern festgestellt, dass bei amorphen, da ... mehr

    Materialdesign in 3D: vom Molekül bis zur Makrostruktur

    Mit additiven Verfahren wie dem 3D-Druck lässt sich inzwischen nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsam ... mehr

  • Forschungsinstitute

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.