Hochselektive künstliche Antikörper nutzen viralen Fußabdruck

Forscher visualisieren, wie Viren an synthetische Rezeptorpolymere binden

07.05.2020 - Deutschland

Viren werden in der Regel mit Hilfe spezifischer biologischer Antikörper nachgewiesen. Mittlerweile lassen sich aber auch synthetische Rezeptormaterialien herstellen, die Viren selektiv binden können. Dafür wird an der Oberfläche von Polymerpartikeln ein ‚chemischer Abdruck‘ des Virus erzeugt, der die exklusive Bindung dieses Erregers ermöglicht. Erstmals gelang es nun einem Ulmer Forscherteam mit Hilfe eines hochauflösenden Mikroskopieverfahrens tatsächlich zu zeigen, wie Viren an solche molekular geprägten Rezeptorpolymere andocken. Diese hochselektiven künstlichen Antikörper können möglicherweise auch für den diagnostischen Nachweis des neuen Coronavirus (SARS-CoV-2) eingesetzt werden.

Institut für Analytische und Bioanalytische Chemie der Universität Ulm

Die Schemagrafik zeigt die molekulare Prägung eines Polymers mit Hilfe von Virenpartikeln und das anschließende Wiederbinden dieser Viren

Institut für Biophysik/Uni Ulm

STED-mikroskopische Aufnahmen: (oben) geprägtes Polymer-Partikel für humanen Adenovirus mit wiedergebundenen, humanen Adenoviren; (mittig) nicht-geprägtes Kontrollpartikel nach Inkubation mit dem Virus (keine Viren gebunden) und (unten) geprägtes Polymer-Partikel für humanen Adenovirus nach Inkubationen mit anderen Kontrollviren (keine anderen Viren gebunden). Grün angefärbt: Kern-Schale Partikel (AlexaFluor594); rot angefärbt: Adenovirus (Atto647N)

Institut für Analytische und Bioanalytische Chemie der Universität Ulm
Institut für Biophysik/Uni Ulm

Schon länger ist bekannt, dass man auf Polymer-Basis künstliche Antikörper herstellen kann, die selektiv bestimmte Viren binden. Dafür wird die Oberfläche von Mikro- oder Nanopartikeln einer sogenannten molekularen Prägung unterzogen. „Beim ‚molecular imprinting‘, wird das Rezeptormaterial mit dem spezifischen ‚Fußabdruck‘ eines Virus versehen. Dieser sorgt dafür, dass kein anderer Virus an dieser Stelle andocken kann“, erklärt Professor Boris Mizaikoff, der mit seiner Arbeitsgruppe zur molekularen Prägung forscht. Der Leiter des Institutes für Analytische und Bioanalytische Chemie ist Koordinator der Studie, die in der Fachzeitschrift Analytical Chemistry veröffentlicht wurde. Das Besondere an der Untersuchung: zum allerersten Mal ist es gelungen, die erneute Bindung des Virus an den künstlichen Antikörper nicht nur chemisch nachzuweisen, sondern auch zu visualisieren.

Die höchstauflösende Abbildung von molekularen Strukturen ist eine Spezialität der Arbeitsgruppe von Professor Jens Michaelis. Der Leiter des Instituts für Biophysik hat hierfür ein spezielles superauflösendes Bildgebungsverfahren zum Einsatz gebracht, das Aufnahmen mit höchster räumlicher Auflösung ermöglicht: die sogenannte STED-Mikroskopie. Bei der „Stimulated Emission Depletion“, so die Ausschreibung der Abkürzung, konnten mit Hilfe spezieller Fluoreszenzfarbstoffe einzelne Viruspartikel sichtbar gemacht werden. Auf der anderen Seite haben die STED-Aufnahmen auch gezeigt, dass die Viren an nicht geprägte Polymer-Partikel nur sehr selten binden. „Auch dieses Ergebnis konnte in der Studie erstmals visuell bestätigt werden“, sagt Michaelis.

Künstliche Antikörper aus dem Chemielabor

Die molekulare Prägung ist ein biotechnologisch und pharmazeutisch hochrelevantes Verfahren, um selektive Bindungsmaterialien maßgeschneidert herstellen zu können. „Das Besondere daran: Wir können damit künstliche Antikörper im Chemielabor herstellen und zwar in vielen Fällen, ohne dass dafür infektiöses Material notwendig ist“, so Mizaikoff. Denn in der Regel reicht es aus, ein häufig vorkommendes Protein aus der Virushülle als Templat, das heißt als ‚chemische Druckvorlage‘, zu verwenden. Auch von Vorteil: das Verfahren ist hochskalierbar, bietet sich also auch für die Produktion im industriellen Umfang an.

Für das Projekt haben die Ulmer Forschenden mit dem regionalen Biotechnologieunternehmen Labor Dr. Merk & Kollegen GmbH in Ochsenhausen zusammengearbeitet. „Die Kooperation war sehr fruchtbar, hat uns das Unternehmen doch dabei unterstützt, konkrete Anwendungsfragen zu bearbeiten und Einsatzpotenziale zu sondieren“, so die Forscher. So eignen sich künstliche Antikörper für eine Vielzahl analytischer Verfahren. Durch die Fähigkeit zur selektiven Erkennung können molekular geprägte Polymere beispielsweise zur An- und Abreicherung viraler Substanzen eingesetzt werden. Auch im Kontext von Diagnostik- und Nachweisverfahren sowie bei der Entwicklung und Herstellung von Impfstoffen kann das „molecular imprinting“ wertvolle Dienste leisten. Nicht zuletzt wird die Corona-Pandemie neue Wege zum Nachweis von SARS-CoV-2 forcieren, und auch andere Viren kann man damit aufspüren.

Die Mikroskopaufnahmen belegen die Funktionsfähigkeit des Verfahrens

Warum ist die Ulmer Studie wissenschaftlich so bedeutsam? „Das Forschungsgebiet der molekular geprägten Materialien ist nach wie vor nicht unumstritten, vor allem was die Kontrolle des Prägeprozesses und die Qualität der Rezeptormaterialien betrifft“, sagt Chemiker Boris Mizaikoff. Daher sei es immens wichtig, dieses komplexe Verfahren der Oberflächenmodifikation rational nachvollziehbar und reproduzierbar zu machen. „Ich denke, mit dieser Veröffentlichung ist uns dieser Nachweis eindrucksvoll gelungen“, sind sich die beiden Naturwissenschaftler einig. Die Fachzeitschrift Analytical Chemistry wird von der American Chemical Society herausgegeben und gilt als das höchstrangigste Fachjournal auf dem Gebiet der analytischen Chemie. Die Herausgeber haben dem Ulmer Forschungsprojekt aufgrund der thematischen Aktualität und Bedeutung das Titelblatt der entsprechenden Journal-Ausgabe gewidmet. Gefördert wurde die Studie vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projektes PROTSCAV II.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

2 Produkte
1 White Paper
2 Broschüren
Themenwelt anzeigen

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

2 Produkte
1 White Paper
2 Broschüren