10.08.2018 - Universität des Saarlandes

Forscher schaffen Grundlage für Schnelltests gegen Krankheiten wie Diabetes oder Malaria

Physiker der Universität des Saarlandes haben ein Verfahren entwickelt, das mit künstlicher Intelligenz in Sekundenschnelle die Form von Blutzellen klassifiziert. Es handelt sich um Grundlagenforschung, die in Zukunft etwa Schnelltests für Krankheiten wie Diabetes, Malaria oder Sichelzellenanämie ermöglichen könnte. Alexander Kihm und Stephan Quint aus der Forschergruppe von Professor Christian Wagner nutzen hierzu Methoden der Mustererkennung durch künstliche neuronale Netzwerke: Diese arbeiten ähnlich wie das Zusammenspiel der Nervenzellen im menschlichen Gehirn. Das Softwareprogramm ist über Blutzellen hinaus auch auf andere große Mengen mikroskopisch kleiner Objekte übertragbar.

Wenn das Blut durch unsere Adern rauscht, treibt die Strömung die roten Blutzellen in rasendem Tempo voran. Das Herz pumpt das Blut mit enormem Druck in die Arterien, dabei drückt es die Blutkörperchen gegen die Gefäßwände. Die winzigen roten Zellen – ein Bluttropfen enthält Millionen davon – kann man sich vorstellen wie elastische Gel-Plättchen mit dickerem Rand. Je nachdem wie hoch der Druck ist, mit dem sie durch die Gefäße schießen, verändern sie ihre Form. „Bei hoher Geschwindigkeit des Blutflusses haben die Blutzellen eher die charakteristische Form eines Pantoffels, weshalb Forscher sie nach dem englischen ´Slipper` tauften. Ist die Geschwindigkeit niedriger, schwimmen sie eher durch die Mitte des Blutgefäßes und zeigen eine symmetrische Form, ähnlich einem Croissant“, erklärt Doktorand Alexander Kihm, der sich im Forscherteam von Professor Christian Wagner mit roten Blutzellen befasst. Das Fließverhalten komplexer Flüssigkeiten wie Blut ist ein Forschungsschwerpunkt der Experimentalphysiker.

Auch bei manchen Erkrankungen sind solche Formveränderungen von Blutzellen typisch. „So haben etwa Diabetes, Malaria oder die erblich bedingte Sichelzellenanämie Einfluss auf die Steifigkeit der Blutzellen“, erklärt Kihm. Ebenso können Medikamente ihre mechanischen Eigenschaften beeinflussen. Bisherige Analyseverfahren, die diese Veränderungen nachweisen, dauern lange, sind teuer und aufwändig. Bei der klassischen Methode zählen Labor-Mitarbeiter unter dem Mikroskop die Blutzellen mit bestimmter Form. Neben den typischen charakteristischen Formen von Croissant oder Slipper existieren aber auch vielfältige nicht eindeutige Zwischenformen, die dieses Unterfangen nicht einfacher machen.

Kihm hat jetzt in seiner Grundlagenforschung die Basis für einen zuverlässigen Schnelltest gelegt. Der Physiker hat eine Analyse-Software entwickelt, die über Mustererkennung blitzschnell die Form großer Mengen von Zellen erkennt und klassifiziert. „Das neuronale Netzwerk identifiziert mit künstlicher Intelligenz die Form der Blutzellen in der Probe anhand von charakteristischen Krümmungen und Wölbungen. Wir sind somit in der Lage, innerhalb von Sekunden Datensätze mit mehreren Tausend Zellen zu analysieren“, erklärt er. Das Verfahren könnte daher der erste Schritt auf dem Weg zu einer schnellen Diagnose für Krankheiten sein, die mit einer Veränderung der Blutzellen-Form einhergehen. Hierzu muss jedoch noch weitergeforscht und -entwickelt werden. Die Software ist nicht nur bei Blutzellen anwendbar, sondern kann auch für andere Anwendungen angelernt werden.

Um sein neuronales Netzwerk zu trainieren, presste Kihm gewaschenes Blut, in dem nur noch rote Blutzellen schwimmen, durch hauchfeine Mikroröhrchen, die im Durchmesser kaum größer sind als die Zellen. Mit dem Hellfeldmikroskop beobachtete und klassifizierte er die Blutkörperchen. Anhand der so erfassten Datensätze erstellte Kihm mathematische Modelle und programmierte die Software zur Mustererkennung.

Fakten, Hintergründe, Dossiers
  • künstliche Intelligenz
  • Blutzellen
  • Sichelzellanämie
  • Hellfeldmikroskopie
  • Mustererkennung
Mehr über Uni des Saarlandes
  • News

    „Smarter“ Schleim

    Physarum polycephalum ist ein wahrer Schlaumeier: Mit Experimenten, in denen der Schleimpilz das Schienennetz von Tokio rekonstruieren und Labyrinthe lösen konnte, landete er bereits in den Nachrichten. Nun hat ein Forschungsteam den Pilz als Vorbild herangezogen, um von dessen Anpassungsfä ... mehr

    Coronavirus: Nur geringes Übertragungsrisiko beim Fussballspielen

    Eine Übertragung des Covid-19-Virus auf dem Spielfeld ist kaum möglich, das zeigt eine Studie der Universitäten Basel und des Saarlandes. Sie schlagen vor, von pauschalen Quarantänemassnahmen für die gegnerische Mannschaft abzusehen, wenn keine engen Kontakte ausserhalb des Spielfelds statt ... mehr

    Physiker beweisen, dass Mikroplastik Zellmembranen schädigen kann

    Über 70 Millionen Tonnen Mikroplastik befinden sich in den Ozeanen. Sie werden dann von Meeresbewohnern und Menschen durch Regen und Übertragung über die Luft aufgenommen. Zwei Physiker, Jean-Baptiste Fleury von der Universität des Saarlandes und Vladimir Baulin von der Universität Tarragon ... mehr