Wie Protonen durch die Zellmembran wandern

Bakteriorhodopsin im virtuellen Labor untersucht

19.04.2007

Rasant schnell transportieren Bakterien mit Hilfe des Proteins Bakteriorhodopsin Protonen durch ihre Zellmembran nach außen. Wie diese lichtbetriebene "Pumpe" im Detail funktioniert, haben Wissenschaftler der DFG-Forschergruppe 436 "Grenzflächenwasser" an der Ruhr-Universität jetzt herausgefunden. Dank virtuellem Labor im Supercomputer konnten sie beobachten, wie die Wassermoleküle im Innern des Proteins kleine Ketten bilden. Man kann sich vorstellen, dass diese Ketten die Protonen wie ein "Nano-Stromkabel" bis auf die Außenseite der Zellmembran leiten. "Dieses Ergebnis stützt die Auffassung, dass Wasser in vielen natürlich vorkommenden Proteinen nicht nur sozusagen ein passiver Beobachter ist, sondern im Gegenteil, eine wesentliche funktionelle Rolle spielt", erklärt Professor Dominik Marx (Lehrstuhl für Theoretische Chemie).

Das Bakteriorhodopsin arbeitet wie eine mit Lichtenergie angetriebene Pumpe, die Protonen gegen einen 10.000-fachen Konzentrationsunterschied durch die Zellmembran aus der Zelle heraus drückt. Bakteriorhodopsin reicht durch die Zellmembran hindurch und bildet sieben Helices, die so gepackt sind, dass sie eine Röhre bilden, in die sich kleine "Wasserpfützen" (Clusternetzwerke) einlagern können. So entsteht ein wassergefüllter Kanal für den kontrollierten Transport von Protonen durch die Zellwand. Der eigentliche Transportprozess lässt sich experimentell nur schwierig untersuchen. Eine der wenigen Möglichkeiten dazu ist die zeitaufgelöste Infrarotspektroskopie. "Deren Ergebnisse, die Infrarot-Spektren, geben deutliche Hinweise darauf, dass dieses interne Wasser eine wesentliche Rolle beim Transport von Protonen durch Bakteriorhodopsin spielt", so Prof. Marx. Allerdings lassen sich die Spektren nicht unmittelbar und eindeutig in atomistisch aufgelöste Bilder übersetzen. "Der Clou besteht darin, dass sich einzelne Wassermoleküle während der Wanderung der Protonen permanent zersetzen und wieder zusammensetzen, also andauernd kleinen chemischen Reaktionen unterworfen sind. Wie wir seit Jahren für verschiedene Systeme zeigen konnten, erklärt erst dieses Phänomen die rasant schnelle Bewegung von Protonen in Wassernetzwerken, und womöglich auch die Effizienz von Bakteriorhodopsin", erläutert Prof. Marx.

Prof. Marx und seine Mitarbeiter bedienen sich daher eines "virtuellen Labors": Sie untersuchen seit Jahren die Bewegung von Protonen in Wassernetzwerken mit modernsten Computersimulationen. Im Fall von Bakteriorhodopsin mussten sie erstmals eine so genannte Multiskalenmethode einsetzen, um die lokale Situation des Protons genau beschreiben und gleichzeitig die Umgebung in die Rechnung einbeziehen zu können, also das Protein selbst, aber auch die Zellmembran und die umgebende Zellflüssigkeit. Anhand von Computersimulationen gelang Prof. Marx. zusammen mit Dr. Gerald Mathias der direkte Nachweis, dass bestimmte Infrarotsignale der bakteriellen Protonenpumpe von eingelagerten Wassermolekülen stammen, die ein zusätzliches Proton beherbergen. "Man kann sich vorstellen, dass dieser Wassercluster wie ein Schwamm Protonen aufnehmen, speichern und wieder abgeben kann", veranschaulicht Dr. Mathias. Letztlich wird dieses Proton nach Lichteinfang des Proteins an die Außenseite der Bakterienmembran abgegeben. Der Prozess ermöglicht so bakterielle Photosynthese und damit Leben.

Originalveröffentlichung: G. Mathias and D. Marx, "Structures and Spectral Signatures of Protonated Water Networks in Bacteriorhodopsin."; Proceedings of the National Academy of Sciences (PNAS) 2007.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren