18.12.2019 - Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI)

Vorhersage von Ausrutschern des Ribosoms

Thermodynamisches Modell zur Untersuchung von Verschiebungen des Leserasters

Im genetischen Bauplan für Proteine ist die Information für jede Aminosäure in Codons verschlüsselt. Diese bestehen aus drei aufeinanderfolgenden Bausteinen der Boten-RNA, die man Basentripletts nennt. Jedes dieser Tripletts kodiert genau eine Aminosäure. Bei der Proteinsynthese binden Adaptermoleküle - sogenannte tRNAs - spezifisch an die Codons und bringen die richtige Aminosäure in das aktive Zentrum des Ribosoms, wo sie an die wachsende Peptidkette gebunden wird. Obwohl dieser Prozess als sehr genau gilt, können Ribosomen bei bestimmten Boten-RNAs so programmiert werden, dass sie um eine Base verrutschen und so die Bedeutung aller folgenden Codons ändern. Dieser Mechanismus wird in der Fachsprache als programmierte, ribosomale Rasterverschiebung (programmed ribosomal frameshifting, PRF) bezeichnet. Juniorprofessorin Neva Caliskan vom Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI) in Würzburg, einer gemeinsamen Einrichtung des Helmholtz-Zentrums für Infektionsforschung in Braunschweig (HZI) und der Julius-Maximilians-Universität Würzburg, hat zusammen mit Forschern des Max-Planck-Instituts für biophysikalische Chemie (MPI-BPC) ein thermodynamisches Modell entwickelt, um die Effizienz von PRF zu berechnen. Mit dem Modell können die Forscher vorhersagen, wo PRF mit hoher Wahrscheinlichkeit auftritt und folglich alternative Proteine entstehen.

PRF bewirkt, dass das Ribosom während der Translation "rutscht" und den Leserahmen so ändert, dass ein anderes Protein produziert wird. PRF wird beispielsweise von Viren benutzt, die mit einer sehr begrenzten Anzahl an Boten-RNAs verschiedene Proteine herstellen müssen, um sich zu vermehren. „Dies ist kein zufälliges Ereignis, sondern wird durch externe Faktoren bestimmt. Bestimmte größere Motive, die einen PRF begünstigen, waren bereits bekannt. In dieser Studie beschreiben wir erstmals die Rolle einzelner RNA-Bausteine, sogenannter Basen“, sagt Prof. Neva Caliskan, Leiterin der Forschungsgruppe „Mechanismen des RNA-Recodings bei Infektionen“ am HIRI. Bei PRF kommt es teilweise zu Fehlpaarungen der Basen am Ribosom, wodurch Energie freigesetzt wird. Auf Basis der freien Energie entwickelten die Forscher ein thermodynamisches Modell, um die Effizienz der PRF entlang der Boten-RNA zu berechnen und vorherzusagen. Ihre Studie liefert signifikante Hinweise darauf, dass PRF ein thermodynamisch kontrollierter Prozess in der Zelle ist. „Jetzt haben wir ein Werkzeug, um das Erbgut nach möglichen Positionen für PRF zu durchsuchen. Darüber hinaus wird uns der Einblick in die thermodynamische Regulation der PRF helfen, bessere RNA-basierte Therapien zur Bekämpfung von Krankheitserregern zu entwickeln“, sagt Caliskan.

Fakten, Hintergründe, Dossiers
Mehr über Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI)
Mehr über Helmholtz-Zentrum für Infektionsforschung
  • News

    Neuer Ansatzpunkt im Kampf gegen Antibiotika-Resistenzen

    Dass sich einzelne unter Millionen Bakterien von einer Antibiotika-Behandlung oder unserem Immunsystem unbeeindruckt zeigen, ist eine der großen Herausforderungen in der Infektionsmedizin. Wissenschaftler des Würzburger Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI), einem ... mehr

    COVID-19: Immunsystem auf Irrwegen

    Bei schweren Krankheitsverläufen von COVID-19 kommt es, anders als bislang allgemein angenommen, nicht allein zu einer starken Immunreaktion – vielmehr ist die Immunantwort in einer Dauerschleife aus Aktivierung und Hemmung gefangen. Fachleute der Charité – Universitätsmedizin Berlin, der U ... mehr

    Schutz vor dem Immunsystem: Zytomegalie-Virus setzt sich aktiv zur Wehr

    Virologen am Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig haben einen entscheidenden Überlebensfaktor bei Viren identifiziert. Ihre Ergebnisse erschienen kürzlich im Fachjournal Proceedings of the National Academy of Sciences. Sie könnten in der Virusimmunologie zu einem ... mehr

  • Firmen

    Helmholtz-Zentrum für Infektionsforschung GmbH

    Im Mittelpunkt steht die Erforschung von Infektionsmechanismen und die Reaktion des Immunsystems auf bakterielle Infektionen. Ziel ist die Entwicklung neuer Ansätze zur Diagnose, Prävention und Therapie von Infektionen. Zudem bildet die Bioverfahrenstechnik eine nationale Plattform, um Proz ... mehr

  • Forschungsinstitute

    Helmholtz-Zentrum für Infektionsforschung GmbH

    Wie lösen Bakterien, Viren, Parasiten und Pilze Krankheiten aus? Und wie setzt sich unser Immunsystem gegen sie zur Wehr? Auf diese Fragen wollen wir am HZI fundierte Antworten finden. Unser Ziel dabei: Die Grundlagen für neue Diagnoseverfahren, neue Wirkstoffe und neue Therapien gegen Infe ... mehr

Mehr über MPI für biophysikalische Chemie
  • News

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr

    Wie das Coronavirus sein Erbgut vermehrt

    Wenn sich ein Mensch mit dem neuartigen Coronavirus SARS-CoV-2 infiziert, vermehrt sich der Erreger in dessen Zellen rasend schnell. Dazu muss das Virus sein Erbgut, das aus einem langen RNA-Strang besteht, vervielfältigen. Diese Aufgabe übernimmt die virale „Kopiermaschine“, Polymerase gen ... mehr

    MINFLUX-Nanoskopie sieht Zellen molekular scharf

    Vor drei Jahren stellten der Göttinger Nobelpreisträger Stefan Hell und sein Team die MINFLUX-Nanoskopie vor. Mit ihr war es erstmals möglich, fluoreszierende Moleküle mit Licht getrennt sichtbar zu machen, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind – die ... mehr