18.07.2018 - Technische Universität Wien

Immunsystem: T-Zellen sind auf Schnelligkeit ausgerichtet

Mit speziellen Mikroskopie-Methoden werden an der TU Wien Immunzellen untersucht

Ohne T-Zellen könnten wir nicht überleben. Sie sind ein wichtiger Teil unseres Immunsystems. An ihrer Oberfläche befinden sich hochsensitive Rezeptoren, die Krankheitserreger aufspüren können. Wie deren Verteilung auf der Oberfläche der T-Zellen genau aussieht, ist bis heute nicht vollständig geklärt – doch Analysen der TU Wien zeigen, dass die bisherigen Vorstellungen nicht haltbar sind.

Bisher dachte man, die T-Zelle würde die Rezeptoren an bestimmten Stellen konzentrieren, um eine möglichst hohe Sensitivität zu erreichen. Wie eine aktuelle Publikation der Forschungsgruppe Biophysik an der TU Wien zeigt, sind T-Zellen jedoch auf möglichst rasches Reagieren ausgelegt. Ihre Rezeptoren sind deshalb zufällig angeordnet. Ermöglicht wurden diese Ergebnisse durch eine enge Kollaboration mit der Medizinischen Universität Wien (MUW) und dem Max-Planck-Institut (MPI) für Biophysik in Göttingen. Die neuen Erkenntnisse helfen nicht nur, die Immunantwort besser zu verstehen, sondern sind in weiterer Folge auch für die Entwicklung neuer medizinischer Heilmethoden wichtig.

Die Nadel im Heuhaufen

„Eine T-Zelle ist ein hochspezifischer Molekül-Detektor“, erklärt Prof. Gerhard Schütz, Leiter der Biophysik-Forschungsgruppe am Institut für Angewandte Physik der TU Wien. „Jede T-Zelle reagiert nur auf ein ganz bestimmtes Molekül, daher benötigen wir in unserem Körper viele unterschiedliche T-Zellen.“ An ihrer Oberfläche trägt jede T-Zelle viele tausend Kopien desselben Rezeptors.

Um eine Immunreaktion auszulösen, braucht die T-Zelle noch einen wichtigen Partner – die sogenannte Antigen-präsentierende Zelle. Diese Zelle präsentiert auf ihrer Oberfläche eine Vielzahl unterschiedlicher Moleküle mit Hilfe spezieller Trägerproteine. Manche dieser Moleküle stammen aus körpereigenen Strukturen und sind harmlos, aber auch charakteristische Antigene von gefährlichen Eindringlingen werden auf diesen Antigen-präsentierenden Zellen durch den Körper transportiert.

Wenn die T-Zelle in Kontakt mit einer solchen Antigen-präsentierenden Zelle kommt, beginnt die Suche nach der Nadel im Heuhaufen: Befindet sich unter den vielen hunderttausend Molekülen, die auf der Oberfläche der Antigen-präsentierenden Zelle angeordnet sind, eines von genau der Sorte, auf die diese eine T-Zelle programmiert ist? „Man kann sich das vorstellen, als hätte die T-Zelle unzählige Versionen desselben Schlüssels auf ihrer Oberfläche – und nun muss in kurzer Zeit festgestellt werden, ob er zu irgendeinem der hunderttausenden Schlösser auf der Antigen-präsentierenden Zelle passt“, erklärt Gerhard Schütz.

Die Schnelligkeit zählt

Kontrovers wurde bisher diskutiert, wie es den T-Zellen gelingt, so extrem sensitiv auf eine geringe Anzahl ganz bestimmter Antigene zu reagieren. Eine verbreitete Theorie lautete: Eine größere Anzahl von Rezeptoren auf der T-Zell-Oberfläche wird lokal in Clustern angereichert – und gemeinsam schaffen es die Rezeptoren dann genauer, an ein bestimmtes Antigen anzudocken. Als es dann gelang, moderne Hochleistungsmikroskopie-Methoden so zu verbessern, dass man erstmals Bilder dieser T-Zell-Oberflächen aufnehmen konnte, schien diese Theorie bestätigt zu werden: Auf den T-Zell-Oberflächen waren unregelmäßige Strukturen zu erkennen, die als Rezeptor-Cluster interpretiert wurden.

Doch dieser Schluss war voreilig: „Wir haben die T-Zellen sehr genau untersucht und uns eingehend mit der Verbesserung der Mikroskopie-Methoden beschäftigt“, sagt Gerhard Schütz. „Was man bisher für Cluster mehrere Rezeptoren gehalten hat, dürfte ein simples Artefakt sein: Es passiert nämlich sehr leicht, dass man ein und dasselbe Rezeptormolekül mehrfach abbildet.“

Die Analysen an der TU Wien legen nun eine andere Theorie nahe: Die Rezeptoren dürften zufällig auf der T-Zelle verteilt sein. Das würde auch erklären, warum die Immunreaktion so rasch abläuft. Egal, wie die Antigen-präsentierende Zelle auf die T-Zelle auftrifft – die T-Zelle hat an dieser Stelle immer einen passenden „Schlüssel“, der ins „Schloss“ passt. Trifft dies zu, verlieren die beiden Zellen keine Zeit damit, sich passend anzuordnen, sondern die Immunreaktion kann unmittelbar ausgelöst werden.

„Wir arbeiten hier am äußersten Limit dessen, was mit modernsten Mikroskopie-Methoden gerade noch möglich ist“, sagt Gerhard Schütz. „Es ist eine aufregende Zeit für die Immunologie. Wir hoffen, durch ein besseres Verständnis der T-Zell-Oberfläche dazu beizutragen, die ersten Schritte in der Erkennung von Krankheitserregern zu verstehen. Diese Erkenntnisse versuchen wir dann, gemeinsam mit Partnern in der Immuntherapie anzuwenden.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    So werden Tiere durchsichtig

    Was passiert eigentlich im Inneren eines Borstenwurms? Wie sind ganz bestimmte Arten von Zellen im Körper eines Axolotls verteilt? Wie sieht die Struktur der Nervenzellen in einem Zebrafisch aus? Wenn man solche biologischen Fragen beantworten wollte, hatte man bisher nur eine Möglichkeit: ... mehr

    Wie man Nervenzellen in fußballförmige Käfige sperrt

    Mit mikroskopisch feinen 3D-Druck-Techniken der TU Wien und Schallwellen, die an der Stanford University als Pinzette verwendet werden, gelang es, Netze aus Nervenzellen zu erzeugen. Mikroskopisch kleine Käfige können an der TU Wien hergestellt werden. Ihre Gitteröffnungen sind nur wenige M ... mehr

    Coronavirus-Frühwarnsystem durch neue Testmethode

    Dank einer neuen Methode kann das Erbgut von SARS-CoV-2 erstmals im Zulauf österreichischer Kläranlagen nachgewiesen werden. So lässt sich ein regionales Auftreten der Viren frühzeitig erkennen. Die große Frage nach der Dunkelziffer der mit SARS-CoV-2 infizierten Personen beschäftigt derzei ... mehr

Mehr über Medizinische Uni Wien
  • News

    Zucker gegen Schnupfen

    Virusinfektionen sind derzeit aktueller denn je, nicht nur das Coronavirus oder die Influenza sind ständig in den Nachrichten, es ist auch Schnupfenzeit – und Schnupfen wird bekanntlich durch das Rhinovirus ausgelöst. Ein Start-Up der Medizinischen Universität Wien, „G.ST Antivirals GmbH“ k ... mehr

    Medikamenten-Entwicklung mit Peptiden aus der Natur

    Eine wissenschaftliche Arbeitsgruppe am Institut für Pharmakologie der Medizinischen Universität Wien konnte in Kooperation mit der Universität Wien und Forschern aus Australien in einer aktuellen Studie zeigen, dass ein aus einer Milbe gewonnenes Peptidhormon am menschlichen Vasopressin-2- ... mehr

    Fettreiche Ernährung der Mutter schadet Gehirn von Ungeborenen

    Ein Studienteam am Zentrum für Hirnforschung der MedUni Wien hat gezeigt, dass fettreiche Ernährung der Mutter im Gehirn von Ungeborenen lebenslange Modifikationen induziert. Mütterliche Organismen produzieren bei gesteigerter Aufnahme von ungesättigten Fettsäuren ein Übermaß an körpereigen ... mehr

Mehr über MPI für biophysikalische Chemie
  • News

    Wie das Coronavirus sein Erbgut vermehrt

    Wenn sich ein Mensch mit dem neuartigen Coronavirus SARS-CoV-2 infiziert, vermehrt sich der Erreger in dessen Zellen rasend schnell. Dazu muss das Virus sein Erbgut, das aus einem langen RNA-Strang besteht, vervielfältigen. Diese Aufgabe übernimmt die virale „Kopiermaschine“, Polymerase gen ... mehr

    MINFLUX-Nanoskopie sieht Zellen molekular scharf

    Vor drei Jahren stellten der Göttinger Nobelpreisträger Stefan Hell und sein Team die MINFLUX-Nanoskopie vor. Mit ihr war es erstmals möglich, fluoreszierende Moleküle mit Licht getrennt sichtbar zu machen, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind – die ... mehr

    Vorhersage von Ausrutschern des Ribosoms

    Im genetischen Bauplan für Proteine ist die Information für jede Aminosäure in Codons verschlüsselt. Diese bestehen aus drei aufeinanderfolgenden Bausteinen der Boten-RNA, die man Basentripletts nennt. Jedes dieser Tripletts kodiert genau eine Aminosäure. Bei der Proteinsynthese binden Adap ... mehr