Proteine am Anker: Interaktion zwischen Proteinen und Pharmaka jetzt detailliert analysierbar

RUB-Biophysiker nutzen oberflächensensitive Spektroskopie

04.09.2012 - Deutschland

RUB-Forscher vom Lehrstuhl für Biophysik haben eine neue Methode zur detaillierten Untersuchung der Interaktion von Medikamenten mit ihren Zielproteinen entwickelt. Die Pharmaindustrie ist schon auf die neue Infrarotspektroskopie-Technik aufmerksam geworden: Im EU-Projekt K4DD, das zur Hälfte von namhaften europäischen Pharmafirmen getragen wird, soll die Methode zur Untersuchung von Wirkstoff-Protein-Interaktionen eingesetzt werden. „Wir haben jetzt ein Werkzeug in der Hand, um die Dynamik pharmakologisch interessanter Proteine im atomaren Detail zu erforschen“, sagt Prof. Dr. Klaus Gerwert. „Wir wollen Substanzbibliotheken gezielt nach potenziellen pharmakologischen Wirkstoffen durchsuchen.“ „Mit unserer Technik können zukünftige Medikamente genauer auf die Proteine abgestimmt werden, was die Nebenwirkungen erheblich reduzieren kann“, ergänzt PD Dr. Carsten Kötting. Zusammen mit Dr. Jörn Güldenhaupt und Philipp Pinkerneil beschreiben sie die neue Methode im Fachjournal „ChemPhysChem“.

Die neue Methode: Aus drei mach eins

Mit der Infrarot-Differenz-Spektroskopie verfolgen Forscher dynamische Vorgänge in Proteinen. Das war bislang nur bei licht-aktivierten Proteinen möglich, aber nicht bei Proteinen, die durch Interaktion mit Bindungspartnern aktiviert werden – genau das ist aber gerade bei vielen krankheitsrelevanten Molekülen der Fall. Um die Dynamik dieser Proteine zu analysieren, müssen sie fest an der Messoberfläche verankert sein und mit den pharmakologischen Wirkstoffen überspült werden, mit denen sie interagieren. Eine solche Verankerung ist zwar möglich, konnte jedoch nicht für jedes beliebige Protein realisiert werden. Dieses Problem umging das RUB-Team, indem es die Infrarot (IR)-Spektroskopie mit einer oberflächensensitiven Technik (Abgeschwächter Totalreflexion) und sogenanntem „His-Tagging“ (Verankerung an dieser Oberfläche) kombinierte.

Abgeschwächte Totalreflexion: den Infrarotstrahl zu allen Proteinen bringen

Bei der herkömmlichen IR-Spektroskopie wird Infrarot-Licht auf eine wässrige Probe eingestrahlt; ein Teil des Lichtes wird von den Proteinen absorbiert, was Rückschlüsse auf ihre Struktur erlaubt. Die RUB-Forscher strahlten das Infrarot-Licht nun durch einen Germanium-Kristall ein, an dessen Oberfläche die Proteine gebunden werden. An den Grenzflächen des Kristalls wird das Licht immer wieder reflektiert und breitet sich so durch den Kristall aus (Abgeschwächte Totalreflexion). Dabei tritt ein Teil der Lichtwellen aus dem Kristall aus und erreicht so die an der Oberfläche gebundenen Proteine. Eine ähnliche Technik, die „Surface Plasmon Resonanz“ wird heute standardmäßig in der Pharmaindustrie eingesetzt, hat aber nicht die atomare Auflösung der neuen Technik.

An die Kette gelegt: das His-Tag

Diese Bindung erfolgte über das His-Tag, eine einfache Aminosäurekette, die heute standardmäßig an Proteine angehangen wird, um sie biochemisch zu untersuchen – quasi ein Universaladapter. Über diesen Anker dockten die RUB-Forscher die Proteine am Germanium-Kristall an. So lagen die Moleküle fest gebunden an einer Oberfläche vor, die das Infrarot-Licht für die Messung über abgeschwächte Totalreflexion zuführte. Der große Vorteil: Eine Fülle von Proteinen ist bereits mit His-Tag ausgestattet, ist also problemlos mit der neuen Bochumer Kombinationsmethode analysierbar. Auch jedes weitere Protein, an das eine His-Kette angehangen wird, ist nun der IR-Spektroskopie zugänglich. „Das wird helfen, eine Vielzahl von biologischen und medizinischen Fragen zu beantworten“, so Gerwert.

Methodenetablierung am Schalterprotein Ras

Als Erstes erprobte das RUB-Team die neue Methode am Protein Ras, dem zentralen Ein/Aus-Schalter des Zellwachstums. Defektes, sogenanntes onkogenes Ras, ist einer der häufigsten Auslöser von Krebs. Den Forschern gelang es, Ras mit dem His-Tag erfolgreich an die Messoberfläche zu binden und dieses an die Kette gelegte Ras durch einen Bindungspartner zu aktivieren. „Die Technik ist derart empfindlich, dass wir das Signal von einer nur fünf Nanometer dicken Proteinschicht auflösen konnten. Das entspricht circa 1/10000 des Durchmessers eines menschlichen Haares“, so RUB-Forscher Dr. Jörn Güldenhaupt, der maßgeblich an der Entwicklung der Methode beteiligt war. Auch kleinste Strukturänderungen beim Übergang zwischen den beiden Schalterstellungen des Ras-Proteins waren mit dem „Protein-Nanoskop“ zu erkennen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren