23.10.2020 - Max-Planck-Institut für biophysikalische Chemie

Auflösungsweltrekord in der Kryo-Elektronenmikroskopie

Neue Technik macht erstmals einzelne Atome in einem Protein sichtbar

Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt. Holger Stark und sein Team am Max-Planck-Institut (MPI) für biophysikalische Chemie haben zum ersten Mal einzelne Atome in einer Proteinstruktur beobachtet und die bisher schärfsten Bilder mit dieser Methode aufgenommen. Mit solch detaillierten Einblicken lässt sich besser verstehen, wie Proteine in der lebenden Zelle ihre Arbeit verrichten oder Krankheiten hervorrufen. Auch kann die Technik zukünftig eingesetzt werden, um Wirkstoffe für neue Medikamente zu entwickeln.

Seit Ausbruch der COVID-19-Pandemie ermitteln Wissenschaftler weltweit die Strukturen wichtiger Schlüsselproteine des SARS-CoV-2-Virus in 3D. Ihr gemeinsames Ziel ist es, Andockstellen für einen Wirkstoff zu finden, mit dem der Erreger wirksam bekämpft werden kann.

Möglich macht dies unter anderem die Kryo-Elektronenmikroskopie, mit der sich dreidimensionale Strukturen von Biomolekülen sichtbar machen lassen. Eine große Herausforderung, denn diese sind in ihrer Struktur äußerst flexibel. Um die wuseligen Moleküle einzufangen, ohne sie zu beschädigen, werden diese extrem schnell abgekühlt, sozusagen schockgefroren. Die tiefgefrorenen Proben werden mit Elektronen beschossen und die resultierenden Bilder aufgenommen. Aus den Aufnahmen kann dann die dreidimensionale Struktur der Moleküle berechnet werden. Für die Entwicklung der Kryo-Elektronenmikroskopie erhielten drei Pioniere dieser Technik, Jacques Dubochet, Joachim Frank und Richard Henderson, im Jahr 2017 den Nobelpreis für Chemie.

Auflösungsweltrekord macht einzelne Atome im Protein sichtbar

Starks Gruppe erreichte nun einen entscheidenden Auflösungsrekord mit einem bisher einzigartigen Kryo-Elektronenmikroskop, das das Team neu entwickelt hat. „Unser Mikroskop besitzt zwei zusätzliche optische Elemente, mit denen wir die Bildqualität und Auflösung weiter verbessern konnten. Diese sorgen dafür, dass Abbildungsfehler optischer Linsen, sogenannte Aberrationen, keine Rolle mehr spielen“, erklärt der Max-Planck-Direktor. Seine Doktorandin Ka Man Yip ergänzt: „Elektronenmikroskope sind optische Instrumente und ähneln physikalisch einem Fotoapparat. Die Aberrationen eines Elektronenmikroskops stören in der Kryo-Elektronenmikroskopie ganz ähnlich wie die einer Kamera in der Fotografie. Für eine wesentlich bessere Bildqualität war es daher entscheidend, diese Fehler zu vermeiden.“

Mehr als eine Million Bilder des Proteins Apoferritin hat das Forscherteam mit dem neuen Mikroskop aufgenommen, um die Molekülstruktur mit einer Auflösung von 1,25 Ångström abzubilden. Ein Ångström entspricht dem Zehnmillionstel eines Millimeters. „Damit werden einzelne Atome im Protein sichtbar – ein Meilenstein auf unserem Gebiet“, erklärt Stark. „Für uns war es, als hätte man dem Mikroskop eine Art Super-Brille aufgesetzt.“ Die neue Struktur enthüllt nie zuvor gesehene Details: Selbst an das Apoferritin gebundene Wassermoleküle und Dichten für die Wasserstoff-Atome können wir sehen.“

Das große Potenzial der Kryo-Elektronenmikroskopie, 3D-Strukturen von Proteinen hochaufgelöst abzubilden, belegen auch Kollegen vom Medical Research Council Laboratory of Molecular Biology in Cambridge (Großbritannien), die mit einem anderen Ansatz eine ähnlich hohe Auflösung erzielten. „Es ist nun denkbar, dass sich in Zukunft mit der Kryo-Elektronenmikroskopie selbst Auflösungen im subatomaren Bereich erreichen lassen“, sagt der Max-Planck-Forscher.

Grundlage für maßgeschneiderte Medikamente

Doch welchen Nutzen hat es, eine Proteinstruktur derart hochaufgelöst untersuchen zu können? Will man verstehen, wie eine von Menschenhand gebaute Maschine funktioniert, muss man ihre Bauteile während des Betriebs beobachten. Ähnlich verhält es sich mit Proteinen – den Nanomaschinen lebender Zellen. Will man ihre Funktionsweise entschlüsseln, muss man die exakte Lage aller ihrer Atome kennen.

Solche detaillierten Einsichten sind auch eine wichtige Grundlage für das strukturbasierte Medikamentendesign. Wirkstoffmoleküle für Medikamente werden dafür so maßgeschneidert, dass sie beispielsweise an Virus-Proteine binden und diese in ihrer Funktion blockieren. Doch welcher Mechanismus liegt der Hemmung zugrunde? Dieser lässt sich nur aufklären und verstehen, wenn die Wechselwirkung zwischen Wirkstoff und Virus-Protein auf atomarer Ebene beobachtet werden kann. Die so gewonnenen Erkenntnisse tragen dazu bei, Wirkstoffmoleküle für Medikamente zu verbessern und Nebenwirkungen zu reduzieren. „Mit dem jetzigen Schritt der Auflösungsverbesserung hat die Kryo-Elektronenmikroskopie ein Niveau erreicht, auf dem der Nutzen für pharmazeutische Entwicklungen direkt sichtbar wird“, so Stark.

Fakten, Hintergründe, Dossiers
  • Kryo-Elektronenmikroskopie
  • Proteine
  • Proteinstruktur
Mehr über MPI für biophysikalische Chemie
  • News

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr

    Wie das Coronavirus sein Erbgut vermehrt

    Wenn sich ein Mensch mit dem neuartigen Coronavirus SARS-CoV-2 infiziert, vermehrt sich der Erreger in dessen Zellen rasend schnell. Dazu muss das Virus sein Erbgut, das aus einem langen RNA-Strang besteht, vervielfältigen. Diese Aufgabe übernimmt die virale „Kopiermaschine“, Polymerase gen ... mehr

    MINFLUX-Nanoskopie sieht Zellen molekular scharf

    Vor drei Jahren stellten der Göttinger Nobelpreisträger Stefan Hell und sein Team die MINFLUX-Nanoskopie vor. Mit ihr war es erstmals möglich, fluoreszierende Moleküle mit Licht getrennt sichtbar zu machen, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind – die ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Zelluläres Kraftwerk recycelt Industrie-Abgase

    Kohlenmonoxid ist ein hochgiftiges Gas. Menschen sterben innerhalb weniger Minuten, wenn sie es einatmen. Trotzdem gibt es Bakterien, die Kohlenmonoxid nicht nur widerstehen können, sie verwenden es sogar zum Atmen und zur Vermehrung. Erkenntnisse darüber, wie diese Bakterien überleben, öff ... mehr

    "Coole" Bakterien

    Aufgrund der milden Winter produzieren Skigebiete Kunstschnee, um den natürlichen Schneefall zu ergänzen oder die Skisaison zu verlängern. Sogenannte „Eisnukelations-Proteine“, die aus dem Bakterium Pseudomonas syringae extrahiert werden, können Wasser besser gefrieren lassen als jedes ande ... mehr

    Covid-19-Ansteckungsrisiko selbst berechnen

    Auch wenn sich die Fachwelt noch nicht ganz einig ist, gehen viele Experten davon aus, dass Aerosolpartikel bei der Übertragung von Sars-CoV-2-Viren eine wichtige Rolle spielen. Aerosole entstehen beim Atmen, Husten oder Niesen, aber auch beim Reden und Singen. Anders als Tröpfchen fallen s ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr