Meine Merkliste
my.bionity.com  
Login  

Die Vermessung der Nanowelt

Forscher etablieren einen Maßstab zur genauen Bestimmung von Abständen innerhalb einzelner Moleküle

05.09.2018

Hugo Sanabria, Nandakumar Chedikulathu Vishnu/Universität Clemson

Forschende aus der ganzen Welt haben einen Maßstab für die FRET-Technologie definiert, indem sie Entfernungen innerhalb von DNA-Molekülen im Subnanometerbereich gemessen haben.

Eine weltweite Studie mit Beteiligung von 20 Laboren hat eine Methode etabliert und standardisiert, um die Abstände innerhalb einzelner Biomoleküle bis auf ein Millionstel der Breite eines menschlichen Haares exakt zu messen. Die Methode stellt eine wesentliche Verbesserung einer Technologie namens „Einzelmolekül-FRET“ (Förster Resonanz Energie Transfer) dar, bei der die Bewegung und Wechselwirkung von fluoreszenzmarkierten Molekülen auch in lebenden Zellen in Echtzeit überwacht werden kann. Bisher wurde die Technologie hauptsächlich zur Untersuchung von Veränderungen relativer Abstände verwendet, also um festzustellen, ob sich Moleküle angenähert oder weiter voneinander entfernt haben. Prof. Dr. Thorsten Hugel vom Institut für Physikalische Chemie und dem BIOSS Centre for Biological Signalling Studies der Universität Freiburg ist einer der leitenden Wissenschaftler der Studie, die kürzlich in der Fachzeitschrift „Nature Methods“ veröffentlicht worden ist.

FRET funktioniert nach einem ähnlichen Prinzip wie Annäherungssensoren im Auto: Je mehr sich das Objekt nähert, desto lauter oder häufiger werden die Pieptöne. Statt auf Akustik zu setzen, basiert FRET auf abstandsabhängigen Änderungen des Fluoreszenz-Lichts zweier Farbstoffe, die mithilfe empfindlicher Mikroskope angezeigt werden. Die Technologie hat die Analyse der Bewegung und der Interaktionen von Biomolekülen in lebenden Zellen revolutioniert.

Hugel und seine Kollegen vermuteten, dass nach der Etablierung eines FRET-Standards unbekannte Entfernungen mit großer Sicherheit ermittelt werden können. Durch die Zusammenarbeit der 20 an der Studie beteiligten Labore wurde die Methode so verfeinert, dass Wissenschaftler mit verschiedenen Mikroskopen und unterschiedlicher Analysesoftware die gleichen Abstandstände auch im Subnanometerbereich erhielten.

„Die absolute Abstandsinformation, die mit dieser Methode gewonnen werden kann, ermöglicht es uns nun, Konformationen in beweglichen Biomolekülen präzise zuzuordnen oder sogar deren Strukturen zu bestimmen“, sagt Hugel, der die Studie gemeinsam mit Dr. Tim Craggs (University of Sheffield/Groß-Britannien), Prof. Dr. Claus Seidel (Universität Düsseldorf) und Prof. Dr. Jens Michaelis (Universität Ulm) leitete. Solche dynamischen Strukturinformationen führen zu einem besseren Verständnis der molekularen Maschinen und Prozesse, die für das Leben grundlegend sind. 

Fakten, Hintergründe, Dossiers
Mehr über Uni Freiburg
  • News

    Sechs an einer Hand

    Menschen mit Polydaktylie besitzen von Geburt an mehr als die üblichen fünf Finger oder Zehen an Händen oder Füßen. Welche Bewegungsfertigkeiten besitzen Menschen mit Polydaktylie und wie sehen deren sensomotorische Hirnregionen aus? Das haben Wissenschaftler der Universität Freiburg, des I ... mehr

    Auflösen von Proteinstau am Eingang von Mitochondrien

    Die Arbeitsgruppe von Privatdozent Dr. Thomas Becker an der Universität Freiburg hat einen neuen molekularen Mechanismus entdeckt, über den Blockaden im Proteinverkehr in die Kraftwerke der Zelle beseitigt werden. Mitochondrien produzieren den Großteil der Energie für den Zellstoffwechsel, ... mehr

    Eine Frage der Zeit: Wie das Immunsystem körpereigene von krankheitserregenden Molekülen unterscheidet

    Ein Team um die Freiburger Biologen Prof. Dr. Wolfgang Schamel und Prof. Dr. Wilfried Weber hat in einem Experiment die Dauer der Wechselwirkung eines Proteins mit T-Zellen, weißen Blutkörperchen, kontrolliert und damit gezeigt, wie das Immunsystem krankheitserregende von körpereigenen Mole ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.