23.07.2018 - Ludwig-Maximilians-Universität München (LMU)

Reparaturen mit Folgen

Ständige Reparaturprozesse in den Abzweigungen des Gefäßsystems fördern Atherosklerose

Atherosklerose – umgangssprachlich als Gefäßverkalkung bezeichnet – entwickelt sich fast ausschließlich an Gefäßabzweigungen, da die dortigen Gefäßzellen vermehrt geschädigt werden – was ständige Reparaturprozesse nötig macht. Wissenschaftler um den LMU-Mediziner Andreas Schober haben nun nachgewiesen, dass dabei sogenannte mikro-RNAs, sehr kurze RNA-Abschnitte, Atherosklerose fördern können.

Wenn Blut durch unverzweigte Arterien strömt, erzeugt es hohe Scherkräfte, die auf die Zellen der Gefäßinnenwände – sogenannte Endothelzellen – wirken. Endothelzellen halten diesen Kräften nicht nur stand, sondern brauchen sie sogar für ihre Entwicklung. An Gefäßabzweigungen entstehen aber Verwirbelungen und damit Erniedrigungen der Scherkräfte, an die die Zellen nicht angepasst sind. „Deshalb werden Endothelzellen an Abzweigungen permanent geschädigt und müssen durch neue ersetzt werden“, sagt Schober. Dies hat zur Folge, dass sich Lipide und Makrophagen in der Gefäßwand anhäufen und frühe atherosklerotische Läsionen bilden – ein physiologischer Prozess, der zum medizinischen Problem wird, sobald sich die Ablagerungen im Laufe des Lebens verstärken.

An der Regulation der permanenten Reparaturprozesse und der Entstehung von Atherosklerose sind die mikroRNAs entscheidend beteiligt. Sie binden auch an sogenannte nicht-codierende RNAs, die biologische Prozesse auf der epigenetischen Ebene regulieren und damit Zellvorgänge direkter und schneller beeinflussen. Wie sich diese Interaktion auf die Atherosklerose-Entstehung auswirkt, war bisher unklar. „Wir konnten nun für eine bestimmte dieser nicht-codierenden RNAs zeigen, dass Atherosklerose gefördert wird, wenn die mikro-RNA an sie bindet“, sagt Schober. Die nicht-codierende RNA verhindert normalerweise, dass es während der Bildung neuer Endothelzellen zu einer Schädigung der Zellen kommt. Die mikro-RNA aber hemmt sie und setzt damit diesen Schutzeffekt außer Kraft. Durch die Hemmung der Interaktion konnten die Wissenschaftler im Mausmodell die Bildung von Atherosklerose reduzieren. „Da wir auch beim Menschen ähnliche Mechanismen gefunden haben, könnte man unsere hemmenden Moleküle möglicherweise auch therapeutisch einsetzen“, sagt Schober.

  • Lucia Natarelli, Claudia Geißler, Gergely Csaba, Yuanyuan Wei, Mengyu Zhu, Andrea di Francesco, Petra Hartmann, Ralf Zimmer & Andreas Schober; "miR-103 promotes endothelial maladaptation by targeting lncWDR59"; Nature Comm.; 2018
Fakten, Hintergründe, Dossiers
Mehr über LMU
  • News

    Der Bauplan für einen Impfstoff gegen SARS-CoV-2 ist fertig

    Noch in diesem Jahr soll ein potenzieller Impfstoff gegen SARS-CoV-2 in ersten klinischen Versuchen am Menschen getestet werden. „Der Bauplan für den Impfstoff ist fertig. Jetzt muss der Impfstoff für die klinischen Tests noch produziert werden“, erklärt Prof. Dr. Stephan Becker. Der Leiter ... mehr

    Eine Art Fischer-Dübel der Biophysik

    Die Interaktion zwischen den Molekülen Biotin und Streptavidin ist ein wichtiges Werkzeug in der Forschung. LMU-Physiker haben die mechanische Stabilität dieser Verbindung nun detailliert untersucht und zeigen: Es kommt auf die Geometrie an. Mechanische Kräfte beeinflussen viele biologische ... mehr

    Immunzellen gegen Alzheimer?

    Forscher des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE), der Ludwig-Maximilians-Universität (LMU) München und des US-Unternehmens Denali Therapeutics haben einen Ansatz entwickelt, um Immunzellen des Gehirns so zu stimulieren, dass sie möglicherweise einen besseren Schutz ... mehr