08.10.2021 - Institute of Science and Technology Austria (IST Austria)

Zellatmung: Das letztes Puzzlestück

Forscher beschreiben zum ersten Mal einen Proteinkomplex, den unsere Zellen benötigen, um richtig zu funktionieren

Starke Müdigkeit, Muskelschwäche bis hin zu Blindheit – mitochondriale Erkrankungen haben verschiedenste Symptome. Aufgrund der hohen Mutationsrate ihrer DNA werden die meisten Erbkrankheiten durch Defekte in den Mitochondrien, den Kraftwerken unserer Zellen, verursacht. In einer soeben im Fachmagazin Nature veröffentlichten Studie zeigen Forscher des Institute of Science and Technology (IST) Austria nun erstmals, die Struktur eines Proteinkomplexes, der für ihre Arbeit besonders wichtig ist. Damit legen sie den Grundstein für neue Behandlungsmethoden.

Um ihre vielfältigen Aufgaben zu erfüllen, benötigen Zellen Energie. In den Kraftwerken der Zelle, den so genannten Mitochondrien, wird die Energie aus unserer Nahrung in das Molekül ATP umgewandelt. Es dient als eine Art Treibstoff, der die meisten zellulären Arbeitsvorgänge antreibt – vom Zusammenziehen der Muskeln bis zum Aufbau des Erbguts. Professor Leonid Sazanov und Irene Vercellino zeigen nun erstmals, wie genau der für diesen Prozess wesentliche Zusammenschluss von Proteinen in Säugetierzellen aussieht.

Wie ein Angelhaken

Mit Hilfe der Kryo-Elektronenmikroskopie, einer Technik, die es Forschern ermöglicht, besonders kleine Proben in ihrem natürlichen Zustand zu betrachten, zeigen die Erstautorin Irene Vercellino und Prof. Sazanov die genaue Struktur des sogenannten Superkomplexes CIII2CIV. Dieser Zusammenschluss von Proteinen pumpt geladene Teilchen, Protonen, durch die Membran der Mitochondrien. Mit ihrer Hilfe kann der Energieumwandlungsprozess in den Zellen gestartet werden. Superkomplexe erfüllen also eine ähnliche Funktion wie Starterbatterien bei einem Auto. Bisher wurde Superkomplexes CIII2CIV nur in Pflanzen- und Hefezellen beschrieben, wo er eine ganz andere Form annimmt, wie die Forscher nun herausgefunden haben. Um zu verstehen, wie genau die Energiegewinnung in tierischen Zellen wie den unseren funktioniert, haben die Wissenschafter nun Zellen von Mäusen und Schafen unter die Lupe genommen und wurden überrascht.

„Niemand hätte geahnt, wie genau SCAF1 agiert“, so Sazanov. Frühere Studien haben gezeigt, dass das Molekül SCAF1 wichtig für die Verbindung der beiden Proteinkomplexe ist, die zusammen den Superkomplex CIII2CIV bilden. Anstatt jedoch nur oberflächlich mit den beiden Proteinkomplexen zu interagieren, dringt das Molekül tief in das Innere von Komplex III ein, während es gleichzeitig an Komplex IV gebunden ist. „Es ist wie ein Angelhaken, der von einem Fisch verschluckt wird. Wenn er einmal verschluckt ist, kommt er nicht mehr heraus“, erklärt der Strukturbiologe.

Ein gesunder Abstand

Außerdem zeigen die Forschenden, dass der Superkomplex CIII2CIV zwei verschiedene Formen annimmt – eine geschlossene und eine offene oder reife Form. „Im geschlossenen Zustand fehlen noch einige Teile des Komplexes III und die beiden Komplexe interagieren sehr intim miteinander“, beschreibt Sazanov. Ist der Superkomplex allerdings vollständig zusammengebaut, sind die beiden Komplexe durch SCAF1 so miteinander verbunden, dass sie einander nicht in die Quere kommen. „Um seine Aufgaben erfüllen zu können, möchte Komplex III wahrscheinlich nicht in seinen Bewegungen gestört werden“, vermutet der weißrussisch-britische Wissenschafter.

Andererseits hat es für Tiere große Vorteile, wenn sich die beiden Komplexe zu einem Superkomplex zusammentun – das beschleunigt nämlich ihre chemischen Reaktionen. Bereits zuvor war bekannt, dass Mäuse und Zebrafische, denen das verbindende SCAF1-Molekül fehlt, deutlich kleiner, weniger fit und weniger fruchtbar sind. Nun zeigen Vercellino und Sazanov welche Rolle das Molekül bei der Bildung des Superkomplexes CIII2CIV genau übernimmt und wie es den zellulären Stoffwechsel optimiert. Es war das letzte Puzzlestück: Zusammen mit ihren früheren Studien haben Sazanov und sein Team nun die Strukturen aller Superkomplexe in Säugetiermitochondrien beschrieben. Damit legen sie den Grundstein für neue Behandlungsmöglichkeiten von mitochondrialen Erkrankungen.

Fakten, Hintergründe, Dossiers
  • Proteinkomplexe
  • Zellatmung
  • Kryo-Elektronenmikroskopie
Mehr über Institute of Science and Technology (IST )
  • News

    Wie Zellen Kurven spüren

    Zellen in Ihrem Körper können nicht sehen, aber sie können ihre Umgebung und ihre eigene Form spüren. Wissenschafter der Universität Mons und des Institute of Science and Technology (IST) Austria zeigten nun sowohl experimentell als auch theoretisch, wie Zellen die Krümmung des sie umgebend ... mehr

    Wie man ein Gehirn verjüngt

    In frühen Entwicklungsphasen kann das Gehirn die Verbindungen zwischen seinen Neuronen viel freier umgestalten als im erwachsenen Zustand. Ein Team von Forschern um Professorin Sandra Siegert am Institute of Science and Technology (IST) Austria haben nun zwei Methoden entdeckt, um diese Pla ... mehr

    Defektes Gen verlangsamt Hirnzellen

    Obwohl angenommen wird, dass viele Formen von Autismus-Spektrum-Störungen (ASS) genetische Ursachen haben, bleibt unklar, wie die identifizierten Gene auf zellulärer und molekularer Ebene funktionieren. Wissenschafter am Institute of Science and Technology (IST) Austria haben ein Hochrisiko ... mehr

  • Forschungsinstitute

    Institute of Science and Technology Austria (IST Austria)

    Das Institute of Science and Technology Austria (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Spitzenforschung in den Naturwissenschaften, der Mathematik und den Computerwissenschaften. Gegründet wurde IST ... mehr