08.04.2021 - Tsinghua University

Radikalischer Angriff auf lebende Zellen

Durch Mikrofluidik gezielt die Oberfläche von Zellen mit freien Radikalen stimulieren

Lassen sich kleine, abgegrenzte Bereiche auf der Zellmembran chemisch manipulieren? Mit einer raffinierten mikrofluidischen Sonde haben Wissenschaftler Zellen gezielt mit freien Radikalen behandelt und die Veränderungen mit Fluoreszenzmikroskopie beobachtet. Wie es in der in der in der Zeitschrift Angewandte Chemie erschienenen Studie heißt, gelang es durch die Mikrofluidiktechnik zum ersten Mal, für detaillierte Zelluntersuchungen einen Strom freier Radikale mit definierten Abmessungen und gleichmäßiger Konzentration zu erzeugen.

Freie Radikale sind wichtige Stimulanzien für Zellen. Kommen lebende Zellen mit diesen Substanzen in Kontakt, setzten sie eine heftige Zellantwort in Gang, die zur Schädigung oder sogar bis zum Tod der Zelle führen kann. Viele Krebsmedikamente wirken durch freie Radikale, die Tumorzellen absterben lassen.

Wissenschaftler finden es jedoch schwierig, die Zellreaktion auf freie Radikale unter wirklich konstanten Bedingungen bei gleichmäßiger Radikalkonzentration zu erforschen. Radikalische Substanzen sind instabil und reagieren mit ihrer Umgebung, bevor sie ihr Ziel erreichen. Ein Team um Jing-Ming Lin von der Tsinghua-Universität in Beijing haben nun einen mikrofluidischen Ansatz entwickelt, um einen gleichmäßigen Strom von freien Radikalen zu erzeugen. Damit lassen sich einzelne Teilbereiche der Zelloberfläche gezielt manipulieren.

Um die Radikale zu erzeugen, wählten die Forscher ein mikrofluidisches Zweikomponentensystem. Durch einen Mikrokanal mit wenigen Tausendstel Millimetern Durchmesser ließen sie eine Lösung eines Enzyms fließen, das Wasserstoffperoxid spalten kann. Durch einen parallelen Kanal strömte eine Lösung aus Wasserstoffperoxid und eines Farbstoffes. Beide Kanäle tauchten senkrecht in eine Nährlösung, in der in wenigen Mikrometern Abstand unter den Kanalöffnungen eine lebende Zelle aufgespannt war. Eine Art „Absaugvorrichtung“ zwischen den Kanälen sorgte dafür, dass die aus den Kanälen ablaufenden Komponenten in einer Reaktionszone zusammenflossen und die Reaktionsprodukte nach oben entweichen konnten.

Durch diesen Aufbau war die Reaktionszone für die Erzeugung der Radikale nur wenige Mikrometer breit. In dieser Zone reagierte das Enzym Meerrettich-Peroxidase mit dem Wasserstoffperoxid zu reaktiven Enzymprodukten, die den organischen Farbstoff in eine radikalische Substanz umwandelten. Diese Farbstoffradikale griffen nun wiederum die direkt unter der Reaktionszone platzierte Zelle an.

Nach einigen Dutzend Sekunden kontinuierlicher Radikalerzeugung beobachteten die Wissenschaftler, dass sich auf der Zellmembran ein winziger rot fluoreszierender Bereich gebildet hatte, der nach Abschalten der Sonde allmählich über die Zelloberfläche wanderte.

Die Möglichkeit, einen einzelnen punktförmigen Bereich auf der Zellmembran chemisch anzugreifen und dessen Entwicklung zu beobachten sei bemerkenswert, schreiben die Autoren: „Im Gegensatz zu lipophilen Tracern, die die gesamte Zelle anfärben, greifen die erzeugten freien Radikale nur eine gewünschte Teilregion einer einzelnen Zelle an. Das ist sehr überzeugend.“

Eine besondere Anwendungsmöglichkeit fasziniert: Das Team möchte versuchen, die mikrofluidische Sonde als „Stift“ für Zellen zu verwenden. „Wir könnten auf eine einzelne Zelle Text schreiben oder etwas zeichnen. Damit ließen sich Zellen individuell markieren oder künstlerisch gestalten,“ bemerken sie.

Fakten, Hintergründe, Dossiers
Mehr über Tsinghua University
  • News

    Bakterien aktivieren ihren eigenen Killer

    Eine neue photothermische Therapie könnte helfen, Antibiotika-Resistenzen zu überwinden: Ein Wirkstoff wandelt eingestrahltes nahes Infrarot-Licht lokal in Wärme um, die Keime abtötet. Dazu muss dieser „Wandler“ aber erst aktiviert werden, wie chinesische Wissenschaftler in der Zeitschrift ... mehr

    Auf dem Weg zum Druck künstlicher Organe

    Ein zweiteiliges wasserbasiertes Gel aus synthetischer DNA und Polypeptiden bringt den 3D-Biodrucker weiter in Richtung Druck von Organen für die Transplantation oder als Tiermodell. Dongsheng Liu (Tsinghua-Universität Peking) und Will Shu (Heriot–Watt University Edinburgh) und ihre Arbeits ... mehr

    Bayer HealthCare baut strategische Partnerschaft mit Tsinghua-Universität aus

    Bayer HealthCare hat mit der Tsinghua-Universität in Peking eine Kooperation auf dem Gebiet der biomedizinischen Wissenschaften für die nächsten drei Jahre vereinbart. Die Vertragspartner bauen damit ihre strategische Zusammenarbeit am bereits bestehenden gemeinsamen Forschungszentrum „Baye ... mehr

Mehr über Angewandte Chemie
  • News

    Aus dem Sessel gegen Krebs

    Cisplatin wird seit den 1970er Jahren in der Krebstherapie eingesetzt. Inzwischen wurden eine Reihe weiterer Platin-haltiger Cytostatika entwickelt, wie TriplatinNC, ein hochgeladener Komplex, der drei über Liganden verbrückte Platin-Atome enthält. Anders als Cisplatin hemmt dieser Wirkstof ... mehr

    Hemmstoff im Tunnel

    Das Enzym Cholin-Acetyltransferase (ChAT) katalysiert die Synthese des Neurotransmitters Acetylcholin und könnte ein Zielmolekül für Pharmaka sein. Ein schwedisches Forschungsteam hat jetzt den Wirkmechanismus von Arylvinylpyridinium (AVP), einer bekannten Klasse von Inhibitoren der ChAT, a ... mehr

    Nützliche „Fake“-Peptide

    Einige nützliche Medikamente bestehen aus Peptiden, die gezielt an bestimmte Zellproteine binden. Um solche Wirkstoffe wirksamer und stabiler zu machen, haben Wissenschaftler jetzt eine Möglichkeit gefunden, ganze Abschnitte des Peptids mit Ureido-(Harnstoff-)Einheiten zu ersetzen. Solche O ... mehr