Meine Merkliste
my.bionity.com  
Login  

Auf dem Weg zur künstlichen Zelle

Integration eines rudimentären Stoffwechsels in ein winziges Tröpfchen

25.06.2018

© MPI für Dynamik komplexer technischer Systeme

Ein rudimentärer Metabolismus: In einem Wassertropfen, der durch ein Tensid in Öl stabilisiert ist, wird Glucosephosphat (G6P 1) mittels eines Dehydrogenase-Enzyms (G6PDH) zu einem Lacton (G6P 2) oxidiert. Angetrieben wird die Reaktion durch die Umwandlung von NAD+ zu NADH, welches anschließend durch invertierte Membranvesikel (IMVs) recycelt wird.

Zellen, die sich im Reagenzglas bilden, sollen große Fragen der Biologie beantworten: Was ist die Minimalausstattung für eine lebende Zelle? Und wie hat das Leben auf der Erde begonnen? Den Vorläufer einer künstlichen Zelle präsentieren nun Forscher des Max-Planck-Instituts für Dynamik komplexer technischer Systeme in Magdeburg, des Forschungszentrum Paul Pascal des Nationalen Zentrums für wissenschaftliche Forschung (CNRS) und der Universität Bordeaux. Es ist ihnen in einer Arbeit der synthetischen Biologie gelungen, in mikroskopisch kleine Tröpfchen die einfache Form eines Stoffwechsels einzubauen: eine chemische Reaktion, die sie durch eine integrierte Energieversorgung aufrechtzuerhalten.

„Wie vermeidet ein lebendiger Organismus seinen Verfall?“, fragt Erwin Schrödinger in seinem Buch „What is life?“, in dem er die physikalischen Aspekte von belebter Materie erörtert. Die Antwort sei offensichtlich, so der Physiker: „Durch Essen, Trinken und Atmen (...)“. Der Fachausdruck hierfür ist Metabolismus, besser bekannt als Stoffwechsel. Die dabei ablaufenden biochemischen Vorgängen dienen Lebewesen dazu, Energie zu gewinnen und Stoffe auf- oder abzubauen. Auch für einzelne Zellen – egal ob sie als Einzeller vorkommen oder innerhalb eines größeren Organismus organisiert sind – ist der Stoffwechsel für ihre Lebens- und Überlebensfähigkeit.

Lebende Zellen brauchen einen Metabolismus und eine Grenze zur Umwelt

Möchten Forscher der synthetischen Biologie also Zellen erzeugen, müssen sie unter anderem einen Metabolismus in einen von der Umwelt abgegrenzten Raum integrieren. Genau das haben Wissenschaftler um Jean-Christophe Baret vom Centre de Recherche Paul Pascal (CRPP, zu deutsch: Forschungszentrum Paul Pascal) und Kai Sundmacher vom Max-Planck-Institut für Dynamik Komplexer technischer Systeme nun in einfacher Form geschafft. Ihre künstlichen Zellen bestanden dabei aus nichts anderem als mikroskopisch kleinen Wassertropfen, die sich in Öl formten. Sie dienten den Forschern als winzige, von ihrer Umgebung abgegrenzte Einheiten – ähnlich wie Zellen, die durch eine Membran von ihrer Umwelt getrennt sind.

Ins Innere dieser Tropfen fügten die Forscher verschiedene molekulare Komponenten, die wiederum eine Stoffwechselreaktion simulierten. Zugegebenermaßen scheint eine solche vereinfachte synthetische Zelle noch weit entfernt von dem natürlichen Pendant. Fest steht aber: „Derartige minimale Systeme sind aus technologischer Sicht relevante Modelle, um darauf aufbauend komplexere, naturähnlichere Systeme zu entwickeln“, sagt Kai Sundmacher, Direktor am Magdeburger Max-Planck-Institut.

Welche Bausteine sind für eine lebende Zelle ausschlaggebend?

Laut Ivan Ivanov, Ingenieur und Forscher am Max-Planck-Institut für Dynamik komplexer technischer Systeme, wollten er und seine Kollegen ohnehin zunächst nur ein minimales System entwerfen, das die grundlegenden Eigenschaften der Zelle aufweise. Nur so lasse sich herausfinden, welche Bausteine am Ende tatsächlich ausschlaggebend für das Leben seien. Schritt für Schritt bauten er und seine Kollegen deshalb aus molekularen Komponenten einen Modellstoffwechsel auf. Diese Vorgehensweise heißt im Fachjargon Bottom-up-Prinzip.

Für Ingenieure ist der Bottom-up-Ansatz Alltag – für synthetische Biologen jedoch nicht. Sie arbeiten in der Regel nach dem Top-Down-Prinzip. Sie starten mit einem echten Organismus, der sie mittels gentechnischer Methoden verändert und so mit neuen Funktionen und Eigenschaften ausstatten. „Im genetischen Material von Zellen sind aber viele Dinge redundant oder gar unnötig“, sagt Ivanov und weist damit auf die Problematik von Top-down-Ansätzen hin. Denn die Wissenschaftler erfahren dabei nicht, welche Merkmale für die Entstehung von Leben tatsächlich notwendig sind.

Die Mikrofluidiktechnik stellt Tropfen nach Gusto her

Neben dem Stoffwechsel gehört dazu die Abgrenzung von der Umwelt: „Jede Zelle hat gewissermaßen eine Wand, die sie von ihrer Umgebung trennt“, erklärt Ivanov. Solche eigenständigen Kompartimente, wie Fachleute es nennen, lassen sich entweder durch Membranen oder, wie in der aktuellen Arbeit, durch Tropfen schaffen.

Die Forscher nutzten die so genannte Mikrofluidiktechnik, mit der sich die Mikrotropfen in großer Anzahl herstellen und rasch analysieren lassen. Sowohl Größe als auch Zusammensetzung konnten die Wissenschaftler dabei nach Gusto fein justieren. Mithilfe von Mikrofluidikmodulen befüllten sie die Kompartimente anschließend mit Glucosephosphat und dem Kofaktor NAD+: Ersteres dient gewissermaßen als Nahrung für die künstlichen Zellen, die sich bei Anwesenheit des Kofaktors NAD+ unter Freisetzung chemischer Energie in ein chemisches Endprodukt umwandelt.

NAD+ spielt auch im Metabolismus lebender Zellen eine Rolle und nimmt im Laufe der Stoffwechselreaktion Wasserstoff auf, sodass es in NADH umgewandelt wird. Damit die Reaktion tatsächlich aufrechterhalten bleibt, fügten die Wissenschaftler ein Modul hinzu, das NAD+ regeneriert, indem es NADH wieder zu NAD+ oxidiert. So ist der Kofaktor stets in seiner notwendigen Form verfügbar.

War das Glucose-Phosphat komplett verbraucht, gingen die Zellen gewissermaßen in einen Schlafmodus über, der sich durch erneute Fütterung mit ihrer Nahrung beenden ließ – wiederum per Mikroinjektion.

Echte Zellen müssen sich vermehren und ihren Bauplan speichern

Dem Leiter des Projekts Jean-Christophe Baret zufolge weist der Modellmetabolismus alle grundlegenden Eigenschaften eines natürlichen Stoffwechsels auf und bietet eine Plattform für weitere Untersuchungen: „Mit der Mikrofluidiktechnik können wir kontrollierte Mengen solcher elementaren Bausteine erzeugen und sie mit noch komplexeren Funktionen ausstatten. Damit ließen sich etwa Hypothesen über die Entstehung von Leben aus bekannten und kontrollierten Bestandteilen testen.“ Um tatsächlich echte Zellen ausreichend realitätsnah nachzuahmen, bräuchten solche Systeme unter anderem noch die Fähigkeit, sich vermehren zu können, und einen Mechanismus zur Speicherung ihres Bauplans - Komponenten, die die Wissenschaftler sich noch vornehmen müssen.

Aber auch ohne diese Eigenschaften ist es für den Erstautor der Publikation Thomas Beneyton denkbar, dass sich solche künstlichen Systeme ähnlich wie biologische verhalten: Man könne etwa Tropfen mit unterschiedlicher Fitness herstellen – also mit unterschiedlichem Appetit oder mit einer variablen Ausgangsmenge an Nahrung – und Nahrungsaustausch unter den Zellen zulassen. So ließe sich eine Konkurrenzsituation herstellen, wie man sie auch unter echten Zellen beobachtet. Derartige Tröpfchenzellen würden sich dann wohl ganz im Sinne der darwinschen Theorie verhalten.

Fakten, Hintergründe, Dossiers
  • Zellen
  • künstliche Zellen
  • synthetische Biologie
Mehr über MPI für Dynamik komplexer technischer Systeme
Mehr über Max-Planck-Gesellschaft
  • News

    Bakterien statt Versuchstiere

    Dirk Görlich und Tino Pleiner vom Max-Planck-Institut für biophysikalische Chemie in Göttingen erhalten den Tierschutzforschungspreis des Bundesministeriums für Ernährung und Landwirtschaft. Den beiden Wissenschaftlern ist es gelungen, sogenannte sekundäre Nanobodies zu entwickeln. Diese kö ... mehr

    Dem Ursprung des Lebens auf der Spur

    Wie das Leben aus unbelebten Stoffen vor mehr als 3,5 Milliarden Jahren auf der Erde entstand, ist eine der grundlegendsten und noch unbeantworteten wissenschaftlichen Fragen. Eine der existierenden Hypothesen, die RNA-Welt-Hypothese, geht davon aus, dass RNA-Biomoleküle zu der Zeit als das ... mehr

    Eizelle sucht Spermium

    Durch eine geschickte Partnerwahl können Tiere den zukünftigen Erfolg ihrer Nachkommen erhöhen. Bei einigen Arten ist diese selbst nach dem Geschlechtsakt noch nicht zu Ende: Forscher des Max-Planck-Instituts für Evolutionsbiologie in Plön haben an Stichlingen herausgefunden, dass die Eizel ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über Centre National de la Recherche Scientifique
Mehr über Université Bordeaux
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.