12.11.2020 - Max-Planck-Institut für Polymerforschung

"Coole" Bakterien

Neue Einblicke in den Mechanismus, der die Fähigkeit zur Eisbildung von bakteriellen eisbildenden Proteinen in einer sauren Umgebung verringert

Aufgrund der milden Winter produzieren Skigebiete Kunstschnee, um den natürlichen Schneefall zu ergänzen oder die Skisaison zu verlängern. Sogenannte „Eisnukelations-Proteine“, die aus dem Bakterium Pseudomonas syringae extrahiert werden, können Wasser besser gefrieren lassen als jedes andere bekannte Material und werden bereits bei der Kunstschneeerzeugung verwendet. Forschende des Max-Planck-Instituts für Polymerforschung haben nun herausgefunden, warum eine saure Umgebung die Eisbildung durch diese Proteine hemmen kann.

Der Winter lehrt uns, dass Wasser bei Temperaturen unter 0 °C in Form von Eis und Schnee vorliegt. Sehr reines Wasser gefriert jedoch erst bei viel niedrigeren Temperaturen um −37 °C. Beim Gefrieren von Wasser bei höheren Temperaturen nahe 0 °C unterstützen das Wasser in der Regel sogenannte „Nukleationskeime“. Diese Nukleationskeime können beispielsweise Staub- und Rußpartikel oder eine spezielle Kategorie von Proteinen sein - lange Ketten von Molekülen die Aminosäuren enthalten und als „Eisnukelations-Proteine“ bezeichnet werden.

Die im natürlichen Bakterium Pseudomonas syringae enthaltenen Eisnukleations-Proteine sind die effizientesten unter allen bekannten Nukleationskeimen. Ihre Fähigkeit Eisbildung zu induzieren ist bekannt und wird bereits kommerziell zur Herstellung von Kunstschnee genutzt. Diese Proteine haben jedoch einen dunklen Ursprung: Das Bakterium ist bekannt für die schädliche Wirkung in Form von Erfrierungen, welches es auf verschiedenen pflanzlichen Kulturen hat. Es ist bekannt, dass saure Umgebungsbedingungen die Fähigkeit dieser Proteine zur Keimbildung von Eis verringern. Die Gruppe von Konrad Meister, Professor an der Universität von Alaska und Gruppenleiter am Max-Planck-Institut für Polymerforschung in Mainz, hat nun einen tieferen Einblick in die physikalischen Prozesse hinter diesem Effekt gewonnen.

Um das Gefrieren zu fördern, müssen sich mehrere dieser Eiskeimbildungsproteine in einer hochgeordneten Struktur anordnen, um die herum sich Wasser zu Eis gefrieren kann. Ein Grundprinzip dieses Ordnungsprozesses beruht auf der Abstoßung einzelner Proteine aufgrund ihrer elektrischen Ladung. Saure Umgebungsbedingungen können diese Abstoßung verringern und damit verhindern, dass sich die Eiskeimbildungsproteine "richtig" organisieren. Stattdessen begünstigen sie die Bildung eines ungeordneten „falschen“ Aggregats. Diese falsche angeordneten Eis-Nukleations-Proteine sind nicht in der Lage Eis bei so hohen Temperaturen wie gewöhnlich (nahe 0 °C) zu bilden.

"Das übergeordnete Ziel der Studie war es, die grundlegenden Mechanismen der bakteriellen Eisbildung zu verstehen. Die Möglichkeit, die Fähigkeit dieser Bakterien selektiv zu verringern, hat jedoch ein direktes Anwendungspotential", sagt Max Lukas, Hauptautor der Studie. „Es wäre zum Beispiel toll, wenn dieses Wissen genutzt werden könnte, um durch Erfrierungen verursachte Ernteverluste zu verringern, nicht zuletzt bei Weintrauben – einem sehr wichtigen Kultur- und Lebensmittelprodukt in und um Mainz."

Fakten, Hintergründe, Dossiers
  • Wasser
Mehr über MPI für Polymerforschung
  • News

    Kombinatorische Krebstherapie

    Auf der Suche nach Wirkstoffen gegen Krebs stehen immer häufiger Kombinationstherapien im Mittelpunkt. Wissenschaftler aus Deutschland und China haben jetzt Chemotherapie mit photodynamischer Therapie kombiniert. Alle Wirkstoffe werden in einer Nanokapsel mit Proteinhülle verkapselt und gem ... mehr

    Das Netz des Todes

    Krebs gehört laut dem Statistischen Bundesamt mit einem Anteil von beinahe 25% zu den häufigsten Todesursachen in Deutschland. Chemotherapie wird häufig zur Behandlung eingesetzt, bringt aber auch für gesunde Organe Nebenwirkungen mit sich. Einen ganz anderen Weg versuchen nun Wissenschaftl ... mehr

    Aus eins mach zwei – Teilung künstlicher Zellen

    Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung f ... mehr

Mehr über Max-Planck-Gesellschaft