24.01.2020 - Max-Planck-Institut für molekulare Zellbiologie und Genetik

Lass uns eine Zelle bauen

Minimales synthetisches Zellsystem zur Untersuchung grundlegender Zellfunktionen entwickelt

Zellen sind die Grundbausteine allen Lebens. Ihr Inneres bietet eine ideale Umgebung, in der die elementaren Moleküle des Lebens interagieren können, um chemische Reaktionen stattfinden zu lassen und somit Leben ermöglichen. Die biologische Zelle ist jedoch sehr komplex, sodass es schwierig ist, zu verstehen, was in ihr vorgeht. Eine Möglichkeit, dieses biologische Problem zu lösen, ist die Entwicklung einer synthetischen minimalen Zelle, die im Vergleich zu biologischen Zellen ein einfacheres System darstellt. Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden und des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPIKG) in Potsdam haben solch eine technische Herausforderung gemeistert, indem sie eine minimal komplexe synthetische Zelle gebaut haben, in der grundlegende biochemische Reaktionen ablaufen können und die auf Veränderungen in der Umwelt reagieren kann.

Zellen als Grundbausteine des Lebens bieten ein spezifisches und dynamisches Umfeld, in dem sich Moleküle organisieren und Reaktionen ablaufen, die zur Erhaltung des Lebens notwendig sind. Im Inneren der Zelle befinden sich unzählige Moleküle wie DNA, Proteine, Zucker und Fette (Lipide), die auf unterschiedliche Weise zusammenfinden müssen. Um zu verstehen, wie Zellen all diese Bestandteile organisieren, um in einer komplexen Umgebung zu funktionieren, haben Wissenschaftler synthetische Zellen mit weniger Bestandteilen gebaut und damit einfache Systeme entwickelt, die bestimmte zelluläre Prozesse nachahmen. Dieses Forschungsfeld der synthetischen Biologie verbindet Technik und Biologie miteinander und verwendet Bestandteile des natürlichen biologischen Systems und vereinfacht diese.

Trotz vieler Erfolge in der synthetischen Biologie ist der Aufbau dynamischer Systeme immer noch eine große Herausforderung. Das im Rahmen des MaxSynBio-Netzwerks geförderte Forschungsteam, bestehend aus der MPI-CBG-Forschungsgruppenleiterin Dora Tang und den MPIKG-Forschungsgruppenleitern Rumiana Dimova und Tom Robinson, hat diese technische Schwierigkeit nun gemeistert und eine synthetische Zelle gebaut, die auf Veränderungen in der Umwelt reagieren kann. Die Forscher konstruierten ein Kompartiment mit einer Membran, welches im Inneren ein membranfreies Kompartiment enthält. Diese Unterkompartimente können sich in Abhängigkeit von den Veränderungen in der Umwelt zusammenfinden und auch wieder zerlegen. Die größte Herausforderung bei diesem Projekt war es, ein Kompartiment aus einzelnen Molekülen zu schaffen, die in der synthetischen Zelle schwimmen. Diese Zellen wurden durch Fluoreszenzmikroskopie sichtbar gemacht. Celina Love, die Erstautorin der Studie, erklärt: “So wie wir mit unseren Geschmacksnerven salzig oder sauer schmecken können, so können auch Komponenten im Inneren einer Zelle auf den Säuregehalt (pH-Wert) einer Umgebung reagieren. Wir haben herausgefunden, dass wir durch die Veränderung des pH-Wertes der Umgebung das Verhalten der aufeinandertreffenden Moleküle und ihre Fähigkeit, membranfreie Kompartimente zu bilden, beeinflussen können. Es war besonders spannend zu beobachten, wie chemische Reaktionen durch Veränderung des Säuregrades innerhalb der synthetischen Zelle an- und ausgeschaltet werden können.“

Dora Tang, die Leiterin der Studie, gibt einen Ausblick: „Unsere Arbeit ist ein großer Schritt nach vorn, um komplexere synthetische Zellen zu bauen, die biologisches Verhalten imitieren können.“ Sie ergänzt: „Dieses regulierbare synthetische System eröffnet spannende Möglichkeiten, um grundlegende Fragen der Biologie zu beantworten, wie zum Beispiel Zellen viele und verschiedene Signalen aus der Umwelt aufnehmen können, um grundlegende zelluläre Funktionen wie den Stoffwechsel in Gang zu setzen und zu regulieren.“

Fakten, Hintergründe, Dossiers
  • Zellen
  • künstliche Zellen
  • synthetische Biologie
Mehr über MPI für molekulare Zellbiologie und Genetik
  • News

    Krebsartiger Stoffwechsel und die Evolution der menschlichen Gehirngröße

    Die Größe des menschlichen Gehirns hat im Laufe der Evolution erheblich zugenommen. Ein bestimmtes Gen, das nur der Mensch hat, veranlasst die Hirnstammzellen, einen größeren Pool an Stammzellen zu bilden. Folglich können mehr Nervenzellen gebildet werden, was die Voraussetzung für ein größ ... mehr

    3D-Modell menschlichen Lebergewebes ermöglicht bessere Diagnose

    Die nicht-alkoholische Fettlebererkrankung (NAFLD) ist in den Industrieländern eine der häufigsten chronischen Lebererkrankungen. Die histologische Analyse des Lebergewebes ist die einzige anerkannte Methode zur Diagnose und Abgrenzung verschiedener Stadien der Erkrankung. Die herkömmliche ... mehr

    Wie Zellen unsere Organe dichthalten

    Unsere Organe sind spezialisierte Kompartimente mit jeweils eigenem Milieu und Funktion. Um unsere Organe nach außen abzudichten, müssen die Zellen im Epithelgewebe eine Barriere bilden, die sogar für Moleküle dicht ist. Diese Barriere wird durch einen Proteinkomplex gebildet, der alle Zell ... mehr

  • Videos

    Science Café: Die Wunderheiler - Regeneration

    Ein abgerissenes Bein wächst nach, ein abgebissener Schwanz ebenso: Der Axolotl, ein Salamander aus Mexiko, ist wie ein Wunderheiler und kann Verletzungen mit Hilfe von Regeneration selbst beheben. Der Champion der Regeneration ist der Plattwurm: Ihn kann man ihn unzählige Teile zerhacken, ... mehr

    Science Café: CRISPR/Cas

    Mit dem CRISPR/Cas-System können Gene eingefügt, entfernt und ausgeschaltet werden - punktgenau, schnell und effizient. Für die Grundlagenforschung ist das eine wichtiger Fortschritt, und auch im Bereich der Gentherapie bedeutet diese neue Technologie eine riesige Chance. Was aber, wenn die ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für molekulare Zellbiologie und Genetik

    Das 1998 gegründete Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) ist eines von 80 Instituten der Max-Planck-Gesellschaft, einer unabhängigen, gemeinnützigen Forschungsorganisation in Deutschland. „Wie bilden Zellen Gewebe?“ Das MPI-CBG widmet sich in einer neuartig ... mehr

Mehr über MPI für Kolloid- und Grenzflächenforschung
  • News

    Diagnostik für alle

    Mikroarrays sind moderne molekularbiologische Untersuchungssysteme, die die schnelle und parallele Diagnose von unterschiedlichen Krankheiten ermöglichen. Sie sind daher für die Erforschung neuer Impfstoffe unverzichtbar. Wie bei einem Computerchip sind hier viele Informationen auf kleinste ... mehr

    "Form ist Funktion"

    Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben gezeigt, dass sich wachsendes Knochengewebe auf langen Zeitskalen wie eine viskose Flüssigkeit verhält und dadurch Formen mit minimaler Oberfläche annimmt. Dieses Verhalten der Zellen bestimmt die Form d ... mehr

    Impfen über die Haut

    Forschern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmi ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Biologische Maschine produziert ihre eigenen Bauteile

    Die synthetische Biologie will nicht nur Prozesse des Lebens beobachen und beschreiben, sondern auch nachahmen. Ein Schlüsselmerkmal des Lebens ist die Replikationsfähigkeit, also die Selbsterhaltung eines chemischen Systems. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Mar ... mehr

    Zur richtigen Zeit am richtigen Ort

    Proteine sind molekulare Arbeitspferde der Zelle, die bestimmte Aufgaben erfüllen. Dabei ist es wichtig, dass der Zeitpunkt der Proteinaktivitäten genauestens kontrolliert wird. Wenn die Proteine ihre Aufgaben erfüllt haben, können Prozesse beendet werden, die unnötig oder schädlich sind. U ... mehr

    Zelluläre Müllabfuhr entsorgt Coronaviren

    Die Erforschung grundlegender zellulärer Abläufe führt immer wieder zu unvermuteten Entdeckungen. Eine Studie von Forschern des Max-Planck-Instituts für Psychiatrie in München, des Uniklinikums Bonn und der Charité in Berlin ist ein anschauliches Beispiel dafür, dass auch Grundlagenforschun ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr