Meine Merkliste
my.bionity.com  
Login  

Hirntumor-Aufnahmen besser auswerten mit Künstlicher Intelligenz

22.10.2018

Um Hirntumore zu erkennen und von anderen Gewebsveränderungen zu unterscheiden, setzen Ärzte die Magnetresonanztomografie (MRT) und eine spezielle Art der Positronen-Emissions-Tomografie (PET) ein. Jülicher, Kölner und Aachener Forscher haben nun in zwei Studien gezeigt, dass sich mittels Künstlicher Intelligenz wertvolle Zusatzinformationen aus den Aufnahmen gewinnen lassen, die dem Auge des Arztes verborgen bleiben.

Erkennen molekulargenetischer Unterschiede

MRT- und PET-Aufnahmen enthalten Informationen, mit deren Hilfe ein Computerprogramm lernen kann, molekulargenetisch verschiedene Hirntumore voneinander zu unterscheiden. Das berichtet ein Forscherteam um Dr. Philipp Lohmann und Prof. Norbert Galldiks aus dem Jülicher Institut für Neurowissenschaften und Medizin (INM-3 und INM-4) sowie der Kölner Universitätsklinik für Neurologie in einer Publikation des Online-Journals "Scientific Reports" der Nature-Gruppe.

Die genetische Ausstattung eines Hirntumors kann die Überlebenszeit der Betroffenen erheblich beeinflussen. Ein Beispiel liefert ein Gen, das für die Aktivität des Enzyms IDH (Isocitrat-Dehydrogenase) verantwortlich ist. Ist es etwa bei Gliomen – eine bestimmte Art von Hirntumor – mutiert, so haben die Betroffenen eine deutlich bessere Prognose als bei unverändertem IDH-Gen.

Um die molekulargenetischen Eigenschaften eines Tumors zu charakterisieren, müssen Ärzte dem Patienten eine Gewebeprobe entnehmen, also eine Biopsie oder Operation durchführen. Von der genetischen Ausstattung eines Tumors kann dann auch abhängen, welche Behandlungsschritte – vor allem Strahlen- und Chemotherapie – ergänzt werden müssen.

Die Wissenschaftler haben computergestützt spezielle Merkmale von Bildern bestimmt, die mittels PET unter Verwendung der in Jülich entwickelten radioaktiv markierten Aminosäure O-(2-[18F]fluoroethyl)-L-tyrosin (FET) entstanden waren. Insbesondere haben sie dabei sogenannte Texturmerkmale berechnet. Diese Merkmale beschreiben, wie unregelmäßig die FET-Anreicherung im Tumor ist. "Die Grundidee stammt aus der automatischen Auswertung von Satellitenbildern. Computerprogramme erkennen dort anhand von Strukturmerkmalen zum Beispiel, wo sich ein See oder eine Stadt befindet", erläutert Philipp Lohmann.

Im nächsten Schritt trainierten die Wissenschaftler eine lernende Software darin, aus den Texturmerkmalen und anderen FET PET-Parametern zu schließen, ob der Tumor eine IDH-Mutation aufweist oder nicht. Sie gaben dabei der Software stets Rückmeldung, inwieweit das Ergebnis mit den Biopsie-Ergebnissen übereinstimmte. Die lernende Software passte daraufhin ihr mathematisches Modell an. Am Ende unterschied sie auf Basis der Bilder mit einer Genauigkeit von rund 93 Prozent zwischen Tumoren mit und ohne IDH-Mutation.

Unterscheiden zwischen Rückfall und Vernarbung

Dieselbe Forschergruppe veröffentlichte in Zusammenarbeit mit Prof. Martin Kocher vom INM-4 und der Kölner Universitätsklinik für Stereotaxie kürzlich eine weitere Arbeit. Die Hirnforscher zeigen im Fachjournal "NeuroImage: Clinical", dass sich eine Software darauf trainieren lässt, aufgrund von MRT- und FET PET-Bildern zwischen einer "Narbe" nach der Bestrahlung eines Hirntumors (Strahlennekrose) und einem erneuten Tumorwachstum zu unterscheiden. Auf konventionellem Weg mittels MRT ist diese Differenzierung kaum möglich. Sie ist aber wichtig, damit die Ärzte nicht Strahlennekrosen wie einen erneuten Tumor behandeln und damit den Patienten unnötig belasten.

Die entscheidenden Bildinformationen liefern wiederum die Texturmerkmale, die ein Arzt ohne Hilfe des Computers nicht erkennen kann. Die Jülicher Forscher fanden heraus: Die "Treffsicherheit" der Künstlichen Intelligenz bei der Diagnostik verbessert sich auf über 90 Prozent, wenn sie mit MRT- und FET PET-Texturmerkmalen "gefüttert" wird. Muss sie mit den Texturmerkmalen von einer der beiden Tomografie-Methoden auskommen, liegt die diagnostische Genauigkeit immer noch bei rund 80 Prozent.

Beide Publikationen weisen darauf hin, dass Methoden der Künstlichen Intelligenz in Zukunft auch in der Hirntumordiagnostik eine wichtige Rolle spielen könnten. Die Ergebnisse dieser Pilotstudien müssen jedoch in weiteren Studien bestätigt werden, bevor sie möglicherweise im klinischen Alltag anwendbar werden.

Fakten, Hintergründe, Dossiers
Mehr über Forschungszentrum Jülich
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.