Meine Merkliste
my.bionity.com  
Login  

Neue Technik kann Art und Herkunft aller Zellen in einem Organismus gleichzeitig ermitteln

Mithilfe der Gen-Schere CRISPR-Cas9 enstehen genetische Narben

11.04.2018

Mikroskopische Aufnahme: AG Junker, MDC

LINNAEUS macht es möglich, die Herkunft jeder Zelle eines Zebrafischs zu verfolgen.

Mikroskopische Aufnahme: AG Junker, MDC

Dass CRISPR/ Cas9 seine Arbeit tat und die Narben im Erbgut produzierte, konnten die Forscherinnen und Forscher unter dem Mikroskop beobachten. Dann ließ das rote Leuchten der Fischembryonen nach.

Dass Zellen die Bausteine des Lebens sind, steht in jedem Bio-Lehrbuch. Ihre Vielfalt offenbart sich jedoch erst jetzt. Denn nun zeigen Technologien wie die RNA-Sequenzierung, welche Gene in jeder einzelnen Zelle abgelesen werden. Anhand ähnlicher Expressionsprofile kann man sie systematisch ordnen. „Wann immer wir uns ein Organ oder einen Organismus damit ansehen, finden wir nicht nur bekannte, sondern auch unbekannte und seltenere Zelltypen“, sagt Dr. Jan Philipp Junker, Leiter der Arbeitsgruppe „Quantitative Entwicklungsbiologie“ am Berlin Institute for Medical Systems Biology des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC). „Die nächste Frage liegt nahe: Woher kommen die verschiedenen Zelltypen?“ Das Team um Junker stellt nun im Fachjournal „Nature Biotechnology“ eine Technik namens LINNAEUS vor, mit der sie sowohl den Zelltyp als auch den Ursprung jeder Zelle analysieren können.

„Wir wollen die Flexibilität in der Entwicklung von Organismen verstehen“, sagt Junker. Passiert während der embryonalen Entwicklung eine Störung, zum Beispiel durch eine Mutation oder durch Umwelteinflüsse, sorgen Reparaturmechanismen mitunter dafür, dass ein Lebewesen später gesund erscheint. Nur die Herkunft der einzelnen Zellen verrät dann die wahre Geschichte – das Ausmaß der Störung sowie den Reparaturmechanismus. Selbst das Herz eines erwachsenen Zebrafischs kann sich nach einer Verletzung regenerieren. „Wiederholt sich dabei ein entwicklungsbiologisches Programm oder passiert etwas Neues? Wandeln sich Zellen und übernehmen andere Aufgaben?“, fragt Junker. In anderen Fällen fehlt ein Zelltyp und verursacht damit eine Erkrankung. Aus den Stammbäumen aller Zellen, die mit LINNAEUS möglich werden, können Forscher künftig neue Hypothesen zu solchen Fragen ableiten.

Durch das schnelle Flicken entstehen zufällige Narben

Die Technik beruht auf Narben im Erbgut, deren Kombination wie ein Barcode für die Herkunft jeder Zelle funktioniert. Noch während die Zebrafisch-Embryonen im Ein-Zell-Stadium sind, injiziert Junkers Team die Gen-Schere CRISPR-Cas9. Innerhalb der nächsten acht Stunden zerschneidet die Schere immer wieder eine Sequenz, die der Fisch garantiert nie braucht: das Gen für ein rot fluoreszierendes Protein (RFP). Das rote Leuchten des Embryos nimmt ab, die Wunden im Erbgut schließen derweil Tausende verschiedener Narben. „CRISPR schneidet zwar immer an genau einer Stelle. Aber die Zellen haben für die Reparatur höchstens eine Viertelstunde Zeit bis zur nächsten Zellteilung“, sagt Junker. „Also wird schnell geflickt, die Chromosomenstücke irgendwie zusammengeklebt. Dabei passieren Fehler. Die Narben im Erbgut haben eine zufällige Länge, auch die exakte Position ist variabel.“ Bei der Zellteilung werden die genetischen Narben an die Tochterzellen vererbt. Zellen, die auf einen gemeinsamen Vorfahren zurückgehen, können somit anhand ihrer genetischen Narben erkannt werden.

Während die Einzelzell-RNA-Sequenzierung Tausende Zellen in Zelltypen ordnet, zeigen die Narben Millionen Verbindungen zwischen den Zellen. Die Herausforderungen, aus diesem Wollknäuel von Daten Stammbäume zu rekonstruieren, waren vielfältig. Zum einen sind manche Narben besonders wahrscheinlich. „Das ist gefährlich. Denn wenn die gleiche Narben-Sequenz in einer Zelle im Herz und im Gehirn geschaffen wird, könnte man fälschlicherweise davon ausgehen, dass sie einen gemeinsamen Vorfahren haben“, sagt Junker. „Wir mussten also wissen, welchen Sequenzen wir nicht trauen können und sie aussortieren.“ Zum anderen seien nicht immer alle Narben in einer Zelle auffindbar, sagt Bioinformatiker Bastiaan Spanjaard, einer der Erstautoren der Studie. „Wir haben also eine Methode entwickelt, die beim Bauen der Stammbäume die fehlenden Daten überbrücken kann.“

In den Datensatz hineinzoomen

Das Ergebnis sind Stammbäume, an deren Verzweigungen jeweils bunte Kuchendiagramme stehen. Jede Verzweigung ist eine Narbe und jede Farbe in den Kuchendiagrammen zeigt, in welchen Zelltypen sie vorkommt. In diese kondensierte Darstellung eines riesigen Datensatzes können Forscher so tief hineinzoomen wie sie möchten.

„Im Herzen gibt es zum Beispiel zwei Zelltypen, die kaum unterscheidbar sind. Aber die Stammbäume zeigen, dass sich ihre Entwicklung sehr früh trennt“, sagt Junker. „Wir wollen als nächstes schauen, wo sie im Fischherz vorkommen. Das gibt oft einen ersten Hinweis auf ihre Funktion.“ Sein Labor bleibt bei den Zebrafischen als Modell. Besonderes Potenzial sieht Junker jedoch auch darin, die Technik bei menschlichen Organoiden anzuwenden. Schließlich könne man dort verstehen, welche Mutation eines Patienten die Zellstammbäume nachhaltig stört.

Originalveröffentlichung:

Bastiaan Spanjaard et al.; "Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars“; Nature Biotechnology; Advance Online Publication 09.04.2018

Fakten, Hintergründe, Dossiers
  • CRISPR/Cas9
  • Genschere
Mehr über MDC
  • News

    Ein Pilzmedikament hilft der Niere auf die Sprünge

    Bei Fluconazol, einem längst zugelassenen Medikament gegen Pilzbefall, hat ein MDC-Forschungsteam überraschende neue Eigenschaften entdeckt. Die Substanz hilft, Wasser aus dem Urin zu ziehen. Das wiesen die Forscher in Nagern nach. Patienten mit seltenen genetischen Krankheiten, bei denen d ... mehr

    Genom von Social-Media-Katze Lil BUB entschlüsselt

    Ihr Aussehen hat Lil BUB im Internet Millionen Follower beschert. Jetzt berichten zwei Molekularbiologen aus Deutschland und eine Molekularbiologin aus den USA, dass eine Kombination von zwei seltenen genetischen Veränderungen die einzigartige Erscheinung der berühmten Katze verursacht. Die ... mehr

    Der Ursprung der B1-Zellen

    Eine neue Studie des MDC könnte eine jahrzehntealte Debatte in der Immunologie beenden: Wie ein Team um Professor Klaus Rajewsky in „Science“ berichtet, sind eigene Vorläuferzellen für die Entwicklung von B1-Zellen nicht notwendig. Die Experimente des Teams sprechen vielmehr dafür, dass ein ... mehr

  • Videos

    Wie beeinflusst die Genomstruktur die Entstehung von Krankheiten?

    Am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) sind rund 1600 Menschen aus mehr als 50 Nationen beschäftigt, davon mehr als 350 Studierende. Forscher arbeiten in mehr als 60 unabhängigen Forschungsgruppen und einem Dutzend Technologieplattformen. Diese Se ... mehr

    Das MDC im Profil - Max Delbrück Center for Molecular Medicine

    Das Max-Delbrück-Centrum für Molekulare Medizin (MDC) in Berlin-Buch ist eines der größten und wichtigsten Zentren für Biomedizin in Deutschland. Es ist Mitglied der Helmholtz-Gemeinschaft - der größten Wissenschaftsorganisation Deutschlands mit 18 Forschungszentren, die ein breites Spektru ... mehr

    DNA 60 | Epigenetik -- Wie Erfahrungen vererbt werden

    Vortrag auf dem "60 Jahre DNA" - Kongress für Lehrkräfte, Studierende, Schüler/innen und InteressierteDas Gen ist 100 geworden, und kaum einer hat es gemerkt. Über Jahrzehnte hat dieser Begriff wie kaum ein anderer das Bild der biologischen Wissenschaften in der Öffentlichkeit geprägt, nich ... mehr

  • Forschungsinstitute

    Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

    Das Max-Delbrück-Centrum für molekulare Medizin (MDC) ist eines der wichtigsten Zentren für biomedizinische Forschung. Das MDC wurde 1992 gegründet, um Ergebnisse der molekularen Forschung in Anwendungen bei der Prävention, Diagnose und Therapie von Krankheiten zu überführen. Der Standort i ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.