29.03.2018 - Technische Universität Graz

Gedruckte Tattoo-Elektroden für die Langzeitdiagnostik

Elektroden für das Langzeitmonitoring elektrischer Herz- oder Muskelimpulse in Form von temporären Tattoos, hergestellt mit einem Tintenstrahldrucker: Eine internationale Forschungsgruppe unter Beteiligung der TU Graz stellt diese neuartige Methode vor.

Bei Diagnoseverfahren wie dem Elektrokardiogramm (EKG) oder der Elektromyografie (EMG) kommen heute vorzugsweise Gel-Elektroden zur Übertragung elektrischer Impulse von Herz oder Muskeln zum Einsatz. In der klinischen Praxis schränken die oft steifen und sperrigen Elektroden die Mobilität von Patientinnen und Patienten jedoch spürbar ein und sind wenig komfortabel. Da das Gel auf den Elektroden zudem bereits nach kurzer Zeit austrocknet, sind die Möglichkeiten der Messungen über längere Zeiträume mit dieser Art von Elektrode beschränkt.

Francesco Greco vom Institut für Festköperphysik der TU Graz stellt nun in Advanced Science gemeinsam mit Forscherinnen und Forschern des Instituto Italiano di Tecnologia (IIT) Pontedera, der Università degli Studi in Mailand sowie der Scuola Superiore S.Anna in Pisa eine neuartige Methode vor, welche die elektrische Impulsübertragung von Mensch auf Maschine mit gedruckten Tattoo-Elektroden auf das nächste Level hebt.

Gedruckte Tattoo-Elektroden für die Langzeitdiagnostik

Bei der nun vorgestellten Methode werden leitfähige Polymere in einem Tintenstrahldruckverfahren auf handelsübliches temporäres Tattoo-Papier gedruckt und so Einzelelektroden oder Multielektroden-Anordnungen hergestellt. Die zur Übertragung der Signale notwendigen externen Verbindungen sind ebenfalls direkt in die Tätowierung integriert. Die Tattoo-Elektroden werden dann wie temporäre Abziehbilder auf die Haut aufgebracht und sind für den Träger oder die Trägerin kaum spürbar. Aufgrund ihrer extrem geringen Dicke von unter einem Mikrometer passen sich die Tattoo-Elektroden den Unebenheiten menschlicher Haut perfekt an und lassen sich auch an Körperstellen anbringen, die für die Applikation herkömmlicher Elektroden nicht geeignet sind, wie etwa das Gesicht. Francesco Greco, Materialwissenschafter am Institut für Festkörperphysik der TU Graz erklärt: „Uns ist mit dieser Methode ein großer Schritt in der Weiterentwicklung der epidermalen Elektronik gelungen. Wir sind auf direktem Weg zu einem extrem kostengünstigen und ebenso einfach wie vielseitig anwendbaren System mit enormem Marktpotenzial.“ Vonseiten internationaler biomedizinischer Unternehmen bestehe bereits konkretes Interesse an der gemeinsamen Entwicklung marktfähiger Produkte berichtet Greco.

Individualisierung epidermaler Elektronik

Eine weitere Besonderheit der Tattoo-Elektroden aus dem Drucker ist, dass selbst eine Perforation des Tattoos etwa durch Haarwachstum die Leistungsfähigkeit der Elektrode und die Signalübertragung nicht beeinträchtigt. Dies ist besonders bei Langzeitanwendungen relevant, denn nachwachsende Haare führen bei herkömmlichen Messmethoden häufig zur Ungenauigkeit der Ergebnisse. In den Tests der italienisch-österreichischen Forschungsgruppe wurden einwandfreie Übertragungen von bis zu drei Tagen erprobt. Dies, so erklärt Greco, ermöglicht die Messung elektrophysiologischer Signale von Patientinnen und Patienten oder Sportlerinnen und Sportlern über längere Zeiträume ohne deren normale Aktivität zu beeinflussen oder einzuschränken. Auch können die Elektroden aus dem Drucker in unterschiedlichen Größen und Anordnungen produziert und individuell an die jeweilige Körperstelle angepasst werden, an der die Messung vorgenommen werden soll.

Das ultimative Ziel der Forschung beschreibt Francesco Greco so: „Wir arbeiten an der Entwicklung von drahtlosen Tattoo-Elektroden mit integriertem Transistor, die es ermöglichen würden, Signale sowohl zu empfangen als auch zu senden. Wir könnten so nicht nur Impulse messen, sondern Körperregionen gezielt stimulieren.“

Fakten, Hintergründe, Dossiers
  • Elektromyografie
  • Tattoo-Elektroden
  • gedruckte Elektronik
Mehr über TU Graz
  • News

    Abbau widerspenstiger Cellulose im Zeitraffer

    Erstmals ist es TU Graz-Forschern gelungen, die Vorgänge beim Celluloseabbau durch eine biologische Nanomaschine, bekannt als das Cellulosom, auf Einzelmolekülniveau sichtbar zu machen. Das Wissen könnte nachhaltigen Konzepten in der industriellen Biotechnologie zum Durchbruch verhelfen. De ... mehr

    LEDs aus bakterieller Produktion

    Im FET Open-Projekt ENABLED arbeitet TU Graz-Proteindesigner Gustav Oberdorfer gemeinsam mit Forschern aus Spanien und Italien an umweltfreundlichen und günstigen Leuchtdioden. Die Basis für diese Vision wird am Institut für Biochemie der TU Graz gelegt, wo Gustav Oberdorfer und sein Team m ... mehr

    Schlüssel zur Robustheit von Pflanzen entdeckt

    Ob Wind oder Wetter – Um vor Umwelteinflüssen geschützt zu sein, müssen Pflanzen gleichzeitig robust und biegsam sein. Für diese faszinierenden Struktureigenschaften ist die Pflanzenzellwand verantwortlich: Sie hält die Pflanze einerseits in Form, indem sie etwa den osmotischen Druck der Ze ... mehr