Meine Merkliste
my.bionity.com  
Login  

Was passiert in der lebenden Zelle?

Mit „Molecular Activity Painting” Zellbewegungen durch einen Lichtpuls-Schalter steuern und beobachten

03.04.2017

© Wiley-VCH

Die Plasmamembran ist eine Schaltstelle für Signalkaskaden, die wichtige Zellprozesse kontrollieren. Sie ist allerdings ein sehr fluides Medium, was die Erforschung solcher Vorgänge schwierig macht. Deutsche Wissenschaftler haben jetzt eine molekulare „Malpinsel”-Technik entwickelt, mit der sie Signalkaskaden steuern und beobachten können. Wie sie in der Zeitschrift Angewandte Chemie berichten, konnten sie mit ihrem modularen System aus membranverankerten, lichtaktivierbaren molekularen Bausteinen Kontraktionsmuster in lebenden Zellen gezielt auslösen und beobachten.

Die Plasmamembran umschließt als Lipidbarriere jede einzelne Zelle. Membranproteine regeln und kontrollieren den Durchlass von Wasser, Ionen, Proteinen und anderen Komponenten. Signale aus der äußeren Umgebung werden durch membranständige Rezeptoren ins Zellinnere übertragen, um zum Beispiel die Zellbewegung oder Differenzierung von Zellen zu steuern. Solche Signalkaskaden lassen sich auf molekularer Ebene nur sehr schwer beobachten, weil die Proteine innerhalb der fluiden Lipidschicht der Plasmamembran sehr schnell wandern können. Die Teams von Leif Dehmelt am Max-Planck-Institut für molekulare Physiologie in Dortmund und Yao-Wen Wu am Chemical Genomics Centre der Max-Planck-Gesellschaft gehen daher einen neuen Weg: Sie versehen einen am Zellsubstrat verankerten künstlichen Rezeptor mit einem speziell entwickelten, modular aufgebauten Molekülsystem. Ein Lichtpuls aktiviert die Bausteine, die nun im Zellinneren eine lokalisierte Signalkaskade bis hin zur Bewegung von Bestandteilen des Zytoskeletts auslösen - von außen sichtbar als „molekularer Pinselstrich” auf der Membran. Diese Technolgie nennen sie „Molecular Activity Painting” oder kurz: MAP.

Das Herzstück von MAP ist ein lösliches, aus vier Teilen aufgebautes Molekül. Es enthält eine Chloralkan-Kohlenwasserstoffkette, eine Polymerbrücke (PEG), eine Molekülgruppe namens Trimethroprim (TMP) und eine lichtempfindliche Gruppe namens Nvoc. Dieses Multifunktionsmolekül erfüllt mehrere Aufgaben: Durch seine Chloralkylgruppe bindet es an einen künstlichen, fest am Zellsubstrat verankerten Rezeptor. Ein einziger Lichtpuls entfernt die Nvoc-Gruppe, und die dadurch freigesetzte TMP-Einheit rekrutiert ein zytosolisches Konstrukt, das wiederum eine Signalkaskade in der Zelle auslöst. Das ganze System hat nur einen Zweck: Steuerung und Visualisierung von molekularen Vorgängen in der lebenden Zelle.

Die Wissenschaftler konnten durch MAP die lokalisierte Kontraktion von Actomyosin in Säugerzellen steuern. Dabei „malten” sie den Buchstaben N auf die Plasmamembran. „‚Molecular Activity Painting’ ermöglicht schaltbare, strukturierte Störungen von regulatorischen Netzwerken im Mikrometer-Maßstab”, erklären die Autoren.

Fakten, Hintergründe, Dossiers
  • Visualisierungen
Mehr über MPI für molekulare Physiologie
Mehr über Max-Planck-Gesellschaft
  • News

    Bakterien statt Versuchstiere

    Dirk Görlich und Tino Pleiner vom Max-Planck-Institut für biophysikalische Chemie in Göttingen erhalten den Tierschutzforschungspreis des Bundesministeriums für Ernährung und Landwirtschaft. Den beiden Wissenschaftlern ist es gelungen, sogenannte sekundäre Nanobodies zu entwickeln. Diese kö ... mehr

    Dem Ursprung des Lebens auf der Spur

    Wie das Leben aus unbelebten Stoffen vor mehr als 3,5 Milliarden Jahren auf der Erde entstand, ist eine der grundlegendsten und noch unbeantworteten wissenschaftlichen Fragen. Eine der existierenden Hypothesen, die RNA-Welt-Hypothese, geht davon aus, dass RNA-Biomoleküle zu der Zeit als das ... mehr

    Eizelle sucht Spermium

    Durch eine geschickte Partnerwahl können Tiere den zukünftigen Erfolg ihrer Nachkommen erhöhen. Bei einigen Arten ist diese selbst nach dem Geschlechtsakt noch nicht zu Ende: Forscher des Max-Planck-Instituts für Evolutionsbiologie in Plön haben an Stichlingen herausgefunden, dass die Eizel ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über Angewandte Chemie
  • News

    Antibakterielles Polymer

    Künstliche Polymere können nur dann antibiotisch wirken, wenn ihr Grundgerüst sowohl wasserabweisende als auch wasserlösliche Regionen enthält. Diese etablierte Modellvorstellung stellt jetzt eine Arbeit von kanadischen Forschern auf den Kopf: In ihrer Publikation in der Zeitschrift Angewan ... mehr

    Auf dem Weg zur personalisierten Medizin

    Ein paar wenige Zellen, die anders sind als der Rest, können große Auswirkungen haben. So können etwa einzelne Krebszellen einer Chemotherapie gegenüber unempfindlich sein und einen Rückfall bei eigentlich als geheilt geltenden Patienten verursachen. In der Zeitschrift Angewandte Chemie ste ... mehr

    Nano-Aggregation auf Befehl

    Eine Kombination aus natürlichen Mikrotubuli und künstlichen makrozyklischen Rezeptoren ermöglicht eine durch Licht gesteuerte, reversible Aggregation der Mikrotubuli zu größeren Nanostrukturen. Wie chinesische Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, können die aggre ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.