Protonen-Rennen in der Zelle simuliert

13.06.2012 - Deutschland

Wie sich Protonen an den Membranwänden biologischer Zellen fortbewegen, ist eine der entscheidenden Fragen zum Verständnis bioenergetischer Prozesse. Jülicher und Linzer Wissenschaftler haben mit experimentellen Untersuchungen und Computersimulationen in einem vereinfachten Modell jetzt wichtige Erkenntnisse über die Transportprozesse gewonnen. Sie haben eine Grenzschicht entdeckt, in der Protonen praktisch ungehindert entlangwandern können, ohne die Bindung zur Membranoberfläche zu verlieren. Die Ergebnisse wurden in PNAS veröffentlicht.

Forschungszentrum Jülich

Ab initio Molekulardynamik Simulation eines Protons (gelbe Kugel) auf einer Grenzfläche aus Wasser (rote Kugeln: Sauerstoff, weiße Kugeln: Wasserstoff) und einer hydrophoben Oberfläche (gepunktetes blaues Gitter) aus n-Dekan (grüne Stäbchen). Die eingefügte Schemazeichnung zeigt den Mechanismus der schnellen Protonenwanderung in der zweiten Wasserschicht (orange), während Protonen in der ersten Wasserschicht (gelb) an der Oberfläche haften.

Der Protonen-Transport spielt eine Schlüsselrolle beim Zellstoffwechsel, etwa bei der Bildung von Adenosintriphosphat (ATP), der Hauptenergiequelle in Zellen aller bekannten Organismen. Spezielle Enzyme wirken dabei als „Protonenpumpen“. Sie steuern die Prozesse, indem sie innerhalb und außerhalb von Zellen und Teilen der Zelle wie den Mitochondrien einen Protonengradienten, also eine unterschiedlich starke Protonenkonzentration, herbeiführen. Die Membranoberfläche ist dabei ein wichtiger Weg für den Protonen-Transport. Die Protonen wandern dort erstaunlich schnell, ähnlich schnell wie in reinem Wasser. Welche Mechanismen dafür verantwortlich sind, dass sie nicht durch die Bindung an die Membranoberfläche abgebremst werden, war bis jetzt ungeklärt.

Wissenschaftler der German Research School for Simulation Sciences und des Bereichs „Computational Biomedicine“ des Institutes for Advanced Simulation (IAS-5) am Forschungszentrum Jülich berichten in PNAS zusammen mit der österreichischen Gruppe von Peter Pohl aus dem Institut für Biophysik der Universität Linz über entscheidende Fortschritte bei der Lösung dieses Rätsels, die sie mit einem minimalistischen Modellsystem erzielt haben. Dazu haben sie die Protonendynamik auf einer Grenzfläche aus Wasser und einer hydrophoben, wasserabweisenden, Oberfläche (n-Dekan) mit sogenannten mikrofluorimetrischen Experimenten beobachtet. Anschließend wurde der Vorgang in aufwendigen Molekulardynamik Simulationen, die quantenmechanische Wechselwirkungen zwischen den Atomen und Molekülen berücksichtigen, auf dem Jülicher Supercomputer JUGENE nachgestellt.

Das Team konnte zeigen, dass die Protonen in einer ersten, direkt an der hydrophoben Membranoberfläche liegenden Wasserschicht größtenteils haften bleiben. Darüber hinaus konnte es aber noch eine zweite, weiter außen liegende Grenzschicht ausmachen, in der sich die Protonen praktisch ungehindert schnell bewegen können. Gleichzeitig bestehen in dieser Schicht ausreichend starke Anziehungskräfte, die verhindern, dass die Protonen vollständig in die wässrige Phase abwandern. Die Berechnungen wurden durch den europäischen Verbund für das Hochleistungsrechnen PRACE gefördert. Auf einem einzelnen Standard-PC hätten sie fast 5.000 Jahre gedauert, der Jülicher Parallelrechner JUGENE benötigte für die insgesamt 40 Millionen Prozessorstunden „nur“ 100 Tage.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte