19.08.2022 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Genaktivitäten in lebenden Zellen messen

Zellen biopsieren statt zerstören

Forschende der ETH Zürich und der EPFL erweitern das aufstrebende Feld der Einzel-​Zell-Analysen um eine wegweisende Methode: Live-​seq erlaubt es, die Aktivität von Tausenden von Genen einer einzelnen Zelle zu messen, ohne sie isolieren und zerstören zu müssen.

Die moderne Biologie will zunehmend verstehen, warum sich individuelle Zellen unterschiedlich verhalten. In der Grundlagenforschung stehen dazu seit wenigen Jahren verschiedene hochempfindliche Messmethoden bereit, um gezielt einzelne Zellen zu analysieren. Solche Einzel-​Zell-Analysen erlauben es, Unterschiede zwischen Zellen eines Verbands zu erkennen, seltene Zelltypen zu finden oder kranke Zellen zu identifizieren – was mit Proben gemischter Zellpopulationen nicht möglich ist.

Wissenschaftler:innen wollen vermehrt herausfinden, welche Gene in einer bestimmten Zelle eingeschaltet oder ausgeschaltet sind. Das lässt sich mittels RNA-​Sequenzierung einzelnen Zellen untersuchen (Englisch: single-​cell RNA sequencing, kurz scRNA-​seq). Dabei werden möglichst alle in der Zellflüssigkeit vorhandenen Boten-​​RNA-​Moleküle entziffert und den jeweiligen aktiven Gensequenzen zugeordnet. So kann die Einzel-​Zell-RNA-Sequenzierung die Aktivität von Tausenden Genen in einer Zelle messen.

Das junge Feld der Einzel-​Zell-RNA-Sequenzierung ist rasch zu einem wichtigen Instrumentarium für die biomedizinische Forschung gewachsen und umfasst heute zahlreiche Techniken zur Analyse der gesamten Boten-​RNA, des so genannten Transkriptoms. «All diesen Techniken ist jedoch eine Einschränkung gemein, die lange als unvermeidbar galt», sagt Julia Vorholt, Professorin für Mikrobiologie an der ETH Zürich, «nämlich, dass die zu untersuchenden Zellen isoliert, aufgelöst und somit abgetötet werden müssen.»

Zellen biopsieren statt zerstören

Ein Team von Forschenden um Vorholt und EPFL-​Professor Bart Deplancke wartet nun mit einer Alternative für die Einzel-​Zell-RNA-Sequenzierung auf: Sie analysiert ebenfalls das Transkriptom, erfasst dieses jedoch minimalinvasiv mittels zellulären Biopsien und hält die Zelle dabei am Leben und funktionill intakt, was einzigartig ist. Die Wissenschaftler:innen stellen ihre «Live-​seq» genannte Technik aktuell in der Fachzeitschrift Nature vor.

Allein dass die analysierte Zelle nicht stirbt, ist laut den Forschenden ein Vorteil für sich: «Unsere Stärke ist, die beprobten Zellen weiter unter dem Mikroskop beobachten zu können, wie sie sich entwickelt und verhält», führt Vorholt aus.

Abgesehen davon belässt Live-​seq die Zellen auch in ihrem physiologischen Kontext. «Die Mikroumgebung und die Zell-​Zell-Interaktionen bleiben bestehen», ergänzt Orane Guillaume-​Gentil, Postdoc in der Gruppe von Vorholt. Sie hat die Methode zusammen mit Wanze Chen von der EPFL im Labor etabliert.

Basis ist ein Zellsauger-​Mikrosystem

Die Vorarbeiten für die Erfassung des Transkriptoms aus lebenden Zellen leisteten die Forschenden vor einiger Zeit an der ETH Zürich. Das Fundament bildet das an der ETH Zürich entwickelte Mikroinjektionssystem FluidFM, das winzige Flüssigkeitsmengen unter einem Mikroskop manipulieren kann. Vorholt und ihre Gruppe machten aus der «kleinsten Injektionsnadel der Welt» eine Zell-​Extratktionsmethode, um einzelne lebende Zellen mit der Mikro-​​Injektionsnadel anzupiksen und deren Inhalt auszusaugen (siehe ETH-​News-Artikel).

Aktuell zeigen die Teams um Vorholt und Deplancke, dass sich vollwertige Transkriptome aus solchen Zellbiopsien nachweisen lassen. Der entscheidende Fortschritt entstand, als es den Forschenden gelang, die RNA aus diesen winzigen Mengen an Zellflüssigkeit auszulesen.

Um Live-​seq zu validieren, demonstrierte das EPFL-​ETH-Forschungsteam, dass ihr Analysewerkzeug verschiedene Zelltypen und -​zustände genau identifizieren kann, ohne sie zu stören. Zudem nutzten die die Forschenden ihre Plattform, um die Veränderungen einzelner Immunzellen direkt abzubilden, bevor und nachdem sie aktiv wurden, sowie von Fettstromazellen – einer Art von Stammzellen – bevor und nachdem sie sich in Fettzellen differenzierten.

Die Genaktivität über die Zeit verfolgen

Live-​seq kann nun helfen, neue biomedizinisch relevante Fragestellungen zu untersuchen. Deplancke, EPFL-​Professor für Systembiologie, erläutert näher: «Etwa warum sich bestimmte Zellen differenzieren und ihre Schwesterzellen nicht, oder warum bestimmte Zellen gegen ein Krebsmedikament resistent sind und ihre Schwesterzellen wiederum nicht».

Zudem kann Live-​seq nun die Aktivität Tausender von Genen in einer einzelnen Zelle durch wiederholte Messungen auch über die Zeit hinweg verfolgen. «So wandelt sich die Einzel-​Zell-Analyse von einem Endpunkt zu einem zeitlichen und räumlichen Analyseverfahren», sagt Vorholt.

Fakten, Hintergründe, Dossiers
  • RNA-Sequenzierungen
  • Transkriptom-Analyse
  • Transkriptome
  • Genaktivität
Mehr über ETH Zürich
  • News

    Neue Reaktion erleichtert Medikamentensuche

    Chemiker:innen haben eine einfache Reaktionsmethode gefunden, mit der sich ein wichtiger chemischer Baustein direkt in andere Arten von Verbindungen umwandeln lässt. Das erweitert die Möglichkeiten der Chemie und erleichtert die Suche nach neuen Wirkstoffen. Arzneimittel wirken immer präzis ... mehr

    Künstliche Intelligenz erfasst zukünftige Corona-Varianten

    Forschende verschafften sich einen Überblick darüber, wie sich das Pandemievirus weiterentwickeln könnte. Eine von ihnen entwickelte Methode könnte helfen, Antikörpertherapien und Impfstoffe zu entwickeln, die auch gegen zukünftige Virusvarianten wirksam sind. Das Pandemievirus Sars-​CoV-2 ... mehr

    Studie zeigt Regenerationsfähigkeit des Axolotl-Gehirns

    (dpa) Eine Zellkarte von Teilen des Gehirns des Axolotls hat weitere Hinweise zur besonderen Regenerationsfähigkeit der Amphibie gebracht. Acht Wochen nach einer Verletzung im Vorderhirn, das auch für die Verarbeitung von Gerüchen zuständig ist, waren einer Studie zufolge alle verlorenen Ne ... mehr

  • Videos

    Kunstherz auf dem Prüfstand

    ETH-Forschende haben ein weiches Kunstherz aus Silikon entwickelt, das sich fast wie ein menschliches Herz bewegt. Produziert wurde das 390 Gramm schwere Silikonherz mit einem 3D-Drucker. mehr

Mehr über Ecole Polytechnique Fédérale de Lausanne