12.07.2021 - Universität Wien

Vielseitige Enamide mit Potenzial für die Medikamentenentwicklung

Selektive Wasserstoff-Eliminierung ermöglicht Synthese flexibler chemischer Bausteine

Ein Forschungsteam um Nuno Maulide von der Fakultät für Chemie hat eine Methode entwickelt, die eine schnelle und direkte Umwandlung unreaktiver Strukturen in flexible chemische Bauelemente ermöglicht. Mit Hilfe der intrinsischen Reaktivität von Carbonsäureamiden generieren die Wissenschafter wertvolle Bausteine – sogenannte Enamide. Dieses Verfahren öffnet der Medikamentenentwicklung Tür und Tor. Die Studie erscheint im Journal of the American Chemical Society.

Amide sind allgegenwärtig, so zum Beispiel in Proteinen und in bekannten Arzneimitteln wie etwa Penicillin. "Die Modifizierung von Amiden hat für die Entwicklung neuer, bioaktiver Substanzen großes Potential. Nach etlichen Jahren ist es uns nun erstmals gelungen, Amide auf Seite des Stickstoffs zu funktionalisieren", erklärt Nuno Maulide, Vorstand des Instituts für organische Chemie. "Die Entdeckung dieser Reaktivität war hierbei ein etwas glücklicher Zufall, wie so oft in der Chemie", verrät Co-Autor Martin Berger.

Anwendung in der Synthese von Arzneimittelanaloga

"Der Trick der neu entwickelten Methode basiert hierbei auf einem geschickten Zusammenspiel einer eher ungewöhnlichen Reagenzkombination bei sehr niedrigen Temperaturen, was eine minutenschnelle Oxidation des Amids bewirkt", erläutert Philipp Spieß, Erstautor der Publikation. "Einfach gesagt wird bei diesem Prozess formal Wasserstoff, H2, abstrahiert." Diese neue Methode ermöglicht zum ersten Mal einen direkten und breit anwendbaren Zugang zu sogenannten Enamiden. Zudem sind die Reaktionsbedingungen – allen voran die tiefen Temperaturen – optimal geeignet, um komplexe Strukturen wie Natur- und Arzneistoffe zu tolerieren, wie die Autoren anhand der Transformation von Dopaminmetaboliten sowie Urikostatika- und Antidepressiva-Analogen zeigen.

"Der Unterschied auf dem Papier sieht so simpel aus, aber der Unterschied im Reagenzkolben ist gigantisch. Aus anfangs unreaktiven Amiden haben wir reaktivere und wertvollere Bausteine geschaffen. Die neu gewonnene Doppelbedingung erlaubt unzählige Modifizierungsreaktionen", erzählt Co-Autor Daniel Kaiser. Exemplarisch zeigten die Chemiker diese Variabilität der erschlossenen Enamid-Stoffklasse anhand verschiedener breitgefächerter Reaktionen, was die Erschließung komplexer Gerüststrukturen ermöglichte.

Quantenmechanische Effekte spielen eine Rolle

Um die ungewöhnliche Reaktivität bei -94 °C weiter zu erforschen, untersuchte die Forschungsgruppe die Eigenschaften der Reaktion genauer und gewann dabei erstaunliche Erkenntnisse. Quantenmechanische Effekte, so genanntes Tunneling, scheinen nach der Untersuchung isotopenmarkierter Startmaterialien eine Rolle in der Reaktion zu spielen und unterstreichen, dass es sich um einen ungewöhnlichen Prozess handelt.

Mit den so gewonnen Erkenntnissen erhofft sich die Gruppe in Zukunft weitere Möglichkeiten der Amid-Funktionalisierung erschließen zu können. "Wir sind überzeugt, dass dies erst der Anfang ist", schließt Maulide.

Fakten, Hintergründe, Dossiers
  • Enamide
  • Medikamentenentwicklung
  • Amide
Mehr über Universität Wien
  • News

    25.000 Jahre altes menschliches Umweltgenom wiederhergestellt

    Uralte Sedimente aus Höhlen können DNA über Jahrtausende konservieren. Deren Analyse wird allerdings dadurch erschwert, dass meist nur wenige Sequenzen aus den Sedimenten gewonnen werden können. Ron Pinhasi und Pere Gelabert haben nun in einer Studie der Universität Wien drei Säugetier-Umwe ... mehr

    Bakterien kapern schlafendes Virus von Konkurrenten

    Phagen sind ein noch relativ unbekannter Bestandteil des menschlichen Mikrobioms, sie können jedoch im Zusammenleben mit Bakterien eine schlagkräftige Rolle spielen. Biochemiker Thomas Böttcher von der Universität Wien und Doktorandin Magdalena Jancheva konnten erstmals zeigen, wie ein Pseu ... mehr

    DNA-basiertes Material mit steuerbaren Eigenschaften

    Während die DNA oft als das "Molekül des Lebens" idealisiert wird, ist sie in der Tat auch ein hochkomplexes Polymer, das für Zukunftsmaterialien eingesetzt werden kann. Nicht nur kann sie Informationen speichern, zu den weiteren faszinierenden Aspekten der DNA gehören ihre geometrischen un ... mehr

  • Videos

    Ötzi Forschung: Das Erbe der Steinzeit-Bakterien

    Was verrät uns Ötzis Mageninhalt über die Besiedelungsgeschichte Europas? Der Bioinformatiker Thomas Rattei von der Uni Wien hat das Magenbakterium Helicobacter pylori analysiert und eine überraschende Entdeckung gemacht. mehr