11.01.2021 - Max-Planck-Institut für molekulare Zellbiologie und Genetik

Spermien auf dem richtigen Weg

Forscher finden einen neuen Mechanismus der männlichen Unfruchtbarkeit

Ein wesentlicher Bestandteil aller eukaryotischen Zellen ist das Zytoskelett. Mikrotubuli, winzige Röhrchen, die aus einem Protein namens Tubulin bestehen, sind Teil dieses Zellskeletts. Zilien und Geißeln, antennenartige Strukturen, die aus den meisten Zellen unseres Körpers herausragen, enthalten viele Mikrotubuli. Ein Beispiel für eine Geißel ist der Spermienschwanz, der für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung unerlässlich ist. Die Geißel muss in einer sehr exakten und koordinierten Weise vorwärts schlagen, um das Fortbewegen der Spermien zu ermöglichen. Ist dies nicht der Fall, kann dies zu männlicher Unfruchtbarkeit führen. Forscher des Institut Curie in Paris, des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden, des Forschungszentrum caesar in Bonn gemeinsam mit der Universität Bonn, des Institut Cochin in Paris und des Human Technopole in Mailand zeigen nun, dass eine bestimmte enzymatische Veränderung des Proteins Tubulin, die sogenannte Glycylierung, essenziell ist, damit die Spermien in einer geraden Linie schwimmen. Diese Ergebnisse lassen vermuten, dass eine Störung dieser Veränderung einigen Fällen von männlicher Unfruchtbarkeit beim Menschen zugrunde liegen könnte.

Die Zellen in unserem Körper nutzen das Erbgut, um daraus Baupläne mit Anweisungen zum Bau von Strukturen und molekularen Maschinen zu erhalten. Diese Maschinen sind sogenannte Proteine. Aber das ist noch nicht alles: Proteine können durch andere Proteine, sogenannte Enzyme, verändert werden. Dass es solche Veränderungen gibt, ist schon lange bekannt, doch erstaunlicherweise ist ihre Funktion in vielen Fällen unbekannt. So weiß man beispielsweise nicht, welche Rolle solche Veränderungen beim Protein Tubulin spielen. Tubulin bildet Mikrotubuli, lange Filamente, mit denen Gerüste in Zellen gebaut werden. Obwohl sich Mikrotubuli in allen Zellen unseres Organismus ähneln, übernehmen sie eine Vielzahl unterschiedlicher Funktionen. Eine sehr spezialisierte Funktion von Mikrotubuli findet sich im Spermienschwanz oder Flagellum. Die Geißeln der Spermien sind für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung essenziell. Sie müssen sehr präzise und koordiniert umher schlagen, um es den Spermazellen zu ermöglichen, schwimmend voranzukommen. Wenn dies nicht gelingt, kann das zu männlicher Unfruchtbarkeit führen. Damit die Spermien in gerader Linie schwimmen können, ist die Veränderung des Proteins Tubulin durch Enzyme notwendig. Eine dieser Modifikationen wird Glycylierung genannt und zählt zu den bislang am wenigsten erforschten Veränderungen von Tubulin.

Wissenschaftler am Institut Curie in Paris, dem MPI-CBG in Dresden und dem Forschungszentrum caesar in Bonn untersuchten gemeinsam mit der Universität Bonn, dem Institut Cochin in Paris und der Human Technopole in Mailand die Glycylierung genauer. Sie fanden heraus, dass beim Fehlen der Tubulin-Modifikation die Bewegungsabläufe der Geißeln gestört sind. Das führt dazu, dass die Spermien meist im Kreis schwimmen. Der Erstautor der Studie, Sudarshan Gadadhar vom Institut Curie, erklärt: „Der Kern der Spermiengeißel besteht aus Mikrotubuli, zusammen mit Zehntausenden von winzigen molekularen Motoren, genannt Dyneine, die es ermöglichen, diese Mikrotubuli rhythmisch zu biegen, um Wellen für die Bewegung und Steuerung zu erzeugen. Die Aktivität dieser Dynein-Motorproteine muss exakt koordiniert sein. Wenn die Glycylierung nicht stattfand, koordinierten sich die Motorproteine untereinander nicht und wir beobachteten, wie die Spermien plötzlich im Kreis schwammen.“

Um dies herauszufinden, arbeiteten die Autoren der Studie mit einer speziellen Art Maus, der die genetischen Baupläne für die Enzyme fehlen, die Mikrotubuli glycylieren. „Wir konnten funktionelle Defekte an Spermien von Mäusen beobachten, denen die Glycylierung fehlte, was zu einer Verminderung der Fruchtbarkeit führte. Da Mäuse für ihre hohe Fruchtbarkeit bekannt sind, könnte ein ähnlicher Defekt beim Menschen zu männlicher Sterilität führen“, so Carsten Janke vom Institut Curie und einer der Koordinatoren der Studie. Um herauszufinden, warum das Fehlen der Glycylierung zu einer gestörten Bewegung der Spermien und damit zu Unfruchtbarkeit führt, verwendete das Team Kryo-Elektronenmikroskopie, um die molekulare Struktur des Flagellums und seiner molekularen Motoren sichtbar zu machen. Die Analyse der mutierten Spermiengeißeln ergab, dass die Geißeln zwar korrekt aufgebaut waren, die Mutation aber die koordinierte Aktivität der axonalen Dyneine – der Motoren, die das Schlagen der Geißel antreiben ¬– beeinträchtigte. Dies erklärt, warum Spermazellen in ihrer Schwimmbewegung beeinträchtigt sind.

Warum ist diese Entdeckung so wichtig? Die anderen Koordinatoren der Studie, Gaia Pigino vom MPI-CBG und der Human Technopole, und Luis Alvarez vom Forschungszentrum caesar, fassen zusammen: „Diese Studie zeigt, wie wichtig die Glycylierung für die Steuerung der Dynein-Motoren des Flagellums ist. Sie ist ein Paradebeispiel dafür, wie Mikrotubuli-Modifikationen die Funktion anderer Proteine in Zellen direkt beeinflussen. Unsere Ergebnisse liefern den direkten Beweis, dass Mikrotubuli eine aktive Rolle bei der Regulierung grundlegender biologischer Prozesse spielen, ermöglicht durch einen Code von Tubulin-Modifikationen. Zudem zeigt die Studie einen neuen Mechanismus, der zu männlicher Unfruchtbarkeit führen kann. Da die Spermiengeißeln nur eine von vielen Zilien-Arten in unserem Körper sind, denken wir, dass eine ähnliche Tubulin-kodierte Regulation bei verschiedenen Zilien-bezogenen Funktionen wichtig ist. Daher ermöglicht unsere Arbeit ein tieferes Verständnis verschiedener Krankheiten, wie Entwicklungsstörungen, Krebs, Nierenerkrankungen oder Atem- und Sehstörungen.“

Fakten, Hintergründe, Dossiers
  • Mikrotubuli
  • Filamente
  • Fortpflanzung
Mehr über MPI für molekulare Zellbiologie und Genetik
  • News

    Die Gene hinter den Superkräften der Fledermäuse

    Fledermäuse können fliegen und sich mit Hilfe von Echoortung mühelos in völliger Dunkelheit orientieren; sie überleben tödliche Krankheiten und sind erstaunlich widerstandsfähig gegenüber dem Altern und Krebs. Forscher haben nun erstmals das Erbgut von Fledermäusen nahezu vollständig entsch ... mehr

    Der Code der Fette

    Lipide, oder Fette, haben in unserem Körper viele Funktionen: So bilden sie Membranbarrieren, speichern Energie oder sind als Botenstoffe unterwegs und regulieren so zum Beispiel Zellwachstum und Hormonausschüttung. Viele von ihnen sind auch Biomarker für schwere Krankheiten. Bisher ist es ... mehr

    Das genetische Geheimnis des Nachtsehens

    Eines der bemerkenswertesten Merkmale des Wirbeltierauges ist seine Netzhaut auf der Augeninnenseite. Überraschenderweise befinden sich die empfindlichen Teile der Fotorezeptorzellen auf der Rückseite der Netzhaut, was bedeutet, dass das Licht erst durch lebendes Nervengewebe reisen muss, b ... mehr

  • Videos

    Science Café: Die Wunderheiler - Regeneration

    Ein abgerissenes Bein wächst nach, ein abgebissener Schwanz ebenso: Der Axolotl, ein Salamander aus Mexiko, ist wie ein Wunderheiler und kann Verletzungen mit Hilfe von Regeneration selbst beheben. Der Champion der Regeneration ist der Plattwurm: Ihn kann man ihn unzählige Teile zerhacken, ... mehr

    Science Café: CRISPR/Cas

    Mit dem CRISPR/Cas-System können Gene eingefügt, entfernt und ausgeschaltet werden - punktgenau, schnell und effizient. Für die Grundlagenforschung ist das eine wichtiger Fortschritt, und auch im Bereich der Gentherapie bedeutet diese neue Technologie eine riesige Chance. Was aber, wenn die ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für molekulare Zellbiologie und Genetik

    Das 1998 gegründete Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) ist eines von 80 Instituten der Max-Planck-Gesellschaft, einer unabhängigen, gemeinnützigen Forschungsorganisation in Deutschland. „Wie bilden Zellen Gewebe?“ Das MPI-CBG widmet sich in einer neuartig ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Zellen sprechen sich bei ihrer Entwicklung ab

    Während der Entwicklung eines Organismus müssen sich die Zellen in einem definierten Zeitplan spezialisieren und bestimmte Funktionen ausbilden: So entsteht aus einem Haufen Zellen strukturiertes Gewebe. Die Forschungsgruppe von Aneta Koseska (ehem. Max-Planck-Institut für molekulare Physio ... mehr

    Neandertaler-Genvarianten und Covid-19

    Letztes Jahr entdeckten Forscher am Max-Planck-Institut für evolutionäre Anthropologie in Leipzig und am Karolinska Institutet in Schweden, dass wir den wichtigsten genetischen Risikofaktor für einen schweren Verlauf der Krankheit Covid-19 vom Neandertaler geerbt haben. Nun beschreiben dies ... mehr

    Krebserregende Bakterien auf frischer Tat ertappt

    Escherichia coli-Bakterien sind ein integraler Bestandteil des menschlichen Darmmikrobioms. Einige Stämme produzieren jedoch ein Erbgut-schädigendes Genotoxin namens Colibactin, welches im Verdacht steht, Darmkrebs zu verursachen. Zwar wurde mittlerweile gezeigt, dass Colibactin zu hochspez ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr