Meine Merkliste
my.bionity.com  
Login  

Bakterien verteidigen sich um fast jeden Preis

Je besser sich Bakterien wappnen, umso schlechter vermehren sie sich

13.12.2017

© L. Becks

Das räuberische Wimperntierchen Tetrahymena thermophila ernährt sich von Bakterien.

Auch Bakterien haben Feinde – im Wasser ernähren sich zum Beispiel einzellige Wimperntierchen, die sogenannten Ciliaten, mit Vorliebe von den Mikroben. Diese schützen sich mit diversen Tricks vor den Räubern, welche die Ciliaten wiederum auszuhebeln versuchen. So entsteht ein evolutionärer Wettlauf um die besten Verteidigungs- und Angriffswaffen. Wissenschaftler des Max-Planck-Instituts für Evolutionsbiologie in Plön zufolge bleibt Beutetieren wie den Bakterien langfristig nichts Anderes übrig, als die Schutzmechanismen aufrechtzuerhalten, selbst wenn der Aufwand dafür so hoch ist, dass sie kaum noch Nachkommen produzieren können.

Räuber und ihre Beute pflegen eine enge Beziehung zueinander: Verändert sich der eine, muss der andere dagegenhalten. Durch eine solche Koevolution und den damit einhergehenden Selektionsdruck kommt es zu einer wechselseitigen Anpassung der Arten.

Die Plöner Forscher um Lutz Becks haben in ihren Experimenten Bakterien und Wimperntierchen für viele Wochen zusammen gehalten und ihre Entwicklung verfolgt. Dabei haben sie beobachtet, dass sich die Mikroben vor der Gefräßigkeit der Ciliaten schützen, indem die normalerweise einzeln lebenden Bakterienzellen nach wenigen Tagen beginnen, in größeren Verbänden als schleimiger „Biofilm“ zu wachsen. So können sie von den Ciliaten nicht mehr so effektiv gefressen werden.

Teure Verteidigung

Solange die Wissenschaftler in ihren Versuchen und Computersimulationen nur den Bakterien Veränderungen erlaubten, konnten diese sich gut vor dem Gefressen werden schützen – und das mit überschaubarem Aufwand. Doch sobald sich auch die Wimperntierchen verändern durften, kam den Bakterien der Schutz teuer zu stehen: Sie produzierten dann nur noch wenige Nachkommen. „Die Feindabwehr ist also sehr kostspielig, denn je besser sich die Bakterien wappnen, umso schlechter vermehren sie sich“, sagt Becks.

Die Bakterien schaffen es demnach nicht, beides zugleich zu optimieren – ein typischer Fall eines evolutionären Kompromisses. Wie genau der Kompromiss ausfällt, hängt aber davon ab, ob sich der Räuber an die Abwehrmaßnahmen der Beute anpassen kann. Wenn ja, wird die Verteidigung für die Beute immer kostspieliger und für die Vermehrung bleibt kaum noch etwas übrig. Kann sich der Räuber dagegen nicht anpassen, muss sich die Beute weniger aufwendig zur Wehr setzen und kann mehr in die Nachkommenschaft investieren“, erklärt Becks.

Weniger Vielfalt

Die Forscher haben außerdem gezeigt, dass bei einem dynamischen Kompromiss die Vielfalt der Räuber abnimmt. Die Wimperntierchen entwickeln folglich weniger unterschiedliche Typen, um sich an Verbände und Biofilme der Bakterien anzupassen. „Das ist für die Beute natürlich günstig und könnte den Druck auf die Bakterien verringern“, so Becks.

Die Studie zeigt, dass mehr Vielfalt in der Beute überraschenderweise nicht immer mehr Vielfalt bei den Räubern bedeutet. Lutz Becks: „Entscheidend ist der Kosten und Nutzen von Merkmalen für die Beute und den Räuber. Wie unsere Experimente zeigen, können sich diese verschieben, je nachdem, ob die Räuber Zeit hatten, sich anzupassen oder nicht.“

Originalveröffentlichung:

Weini Huang, Arne Traulsen, Benjamin Werner, Teppo Hiltunen, and Lutz Becks; "Dynamical trade-offs arise from antagonistic coevolution and decrease intraspecific diversity"; Nature Communications; 12 December, 2017

Fakten, Hintergründe, Dossiers
Mehr über MPI für Evolutionsbiologie
  • News

    Biologische Kriegsführung mit Insekten?

    Während die erschreckende Wirkung von Chemiewaffen durch die bewaffneten Konflikte der Gegenwart in der öffentlichen Wahrnehmung präsent ist, sind biologische Waffen und ihre Wirkung weitgehend aus dem Blickfeld der Öffentlichkeit verschwunden. Ein Forschungsprogramm der Forschungsbehörde d ... mehr

    Eizelle sucht Spermium

    Durch eine geschickte Partnerwahl können Tiere den zukünftigen Erfolg ihrer Nachkommen erhöhen. Bei einigen Arten ist diese selbst nach dem Geschlechtsakt noch nicht zu Ende: Forscher des Max-Planck-Instituts für Evolutionsbiologie in Plön haben an Stichlingen herausgefunden, dass die Eizel ... mehr

    Evolution im Labor

    Lebewesen müssen sich fortwährend an ihre Umgebung anpassen, um darin zu bestehen. Verantwortlich für solche Anpassungen sind Änderungen im Erbgut. Paul Rainey vom Max-Planck-Institut für Evolutionsbiologie in Plön hat zusammen mit Kollegen aus Neuseeland in Laborexperimenten die Entstehung ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Evolutionsbiologie

    Das Max-Planck-Institut für Evolutionsbiologie besteht aus den drei Abteilungen Evolutionsökologie, Evolutionsgenetik und Evolutionstheorie (im Aufbau). Es betreibt Grundlagenforschung, um grundsätzliche evolutionsbiologische Prozesse zu erklären wie etwa ökologische Anpassungen, Entstehung ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Bakterien statt Versuchstiere

    Dirk Görlich und Tino Pleiner vom Max-Planck-Institut für biophysikalische Chemie in Göttingen erhalten den Tierschutzforschungspreis des Bundesministeriums für Ernährung und Landwirtschaft. Den beiden Wissenschaftlern ist es gelungen, sogenannte sekundäre Nanobodies zu entwickeln. Diese kö ... mehr

    Dem Ursprung des Lebens auf der Spur

    Wie das Leben aus unbelebten Stoffen vor mehr als 3,5 Milliarden Jahren auf der Erde entstand, ist eine der grundlegendsten und noch unbeantworteten wissenschaftlichen Fragen. Eine der existierenden Hypothesen, die RNA-Welt-Hypothese, geht davon aus, dass RNA-Biomoleküle zu der Zeit als das ... mehr

    Eizelle sucht Spermium

    Durch eine geschickte Partnerwahl können Tiere den zukünftigen Erfolg ihrer Nachkommen erhöhen. Bei einigen Arten ist diese selbst nach dem Geschlechtsakt noch nicht zu Ende: Forscher des Max-Planck-Instituts für Evolutionsbiologie in Plön haben an Stichlingen herausgefunden, dass die Eizel ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.