Durchbruch in der Proteinsimulation durch maschinelles Lernen
Studie eröffnet unter anderem Anwendungsmöglichkeiten in Entwicklung medizinischer Wirkstoffe
Ein internationales Forschungsteam unter der Leitung von Einstein-Professorin Cecilia Clementi vom Fachbereich Physik der Freien Universität Berlin hat einen Durchbruch in der Computersimulation von Proteinen, den Bausteinen des Lebens, erzielt. Die Studie, veröffentlicht in der Ausgabe vom 18. Juli von Nature Chemistry, stellt ein Modell zur präzisen und effizienten Proteinsimulationen vor, das deutlich schneller arbeitet als herkömmliche Molekulardynamik-Simulationen. Damit ermöglicht das neu entwickelte Simulationsmodell die Untersuchung größerer Proteine und komplexer Systeme – mit potenziellen Anwendungen in der Entwicklung von Medikamenten und Antikörpertherapien für die Behandlung von Krebs und anderen Erkrankungen.
Die Entwicklung eines Modells, das Protein-Faltung und -Dynamik realistisch abbilden kann, war über 50 Jahre lang eine ungelöste Herausforderung. „Diese Arbeit zeigt erstmals, dass Deep Learning diese Hürde überwinden kann und ein Simulationssystem ermöglicht, das all-atomare Proteinsimulationen annähert – ohne explizite Modellierung von Lösungsmittel oder atomaren Details“, sagt Prof. Dr. Cecilia Clementi vom Fachbereich Physik der Freien Universität Berlin.
In dem neu entwickelten Proteinsimulationsmodell CGSchNet hat das Forschungsteam unter Leitung von Clementi ein sogenanntes Graph-Neuronales Netz darauf trainiert, effektive Wechselwirkungen zwischen den Teilchen der grobgranularen Proteinsimulation zu erlernen – basierend auf einer Vielzahl von rechenaufwändigen Simulationen, die mit atomarer Auflösung durchgeführt wurden. Im Gegensatz zu Strukturvorhersage-Tools modelliert CGSchNet den dynamischen Faltungsprozess selbst, einschließlich intermediärer Zustände, die bei Fehlfaltungen wie Amyloiden, also pathologischen Proteinaggregaten wie z.B. bei der Alzheimer-Erkrankung, eine Rolle spielen. Es simuliert zudem Übergänge zwischen gefalteten Zuständen – entscheidend für die Funktion von Proteinen – und die Ergebnisse des Modells lassen sich auf Proteine außerhalb des Trainingsdatensatzes übertragen. Das Modell sagt langlebige Zustände gefalteter, ungefalteter und ungeordneter Proteine präzise voraus, die einen großen Anteil der biologisch aktiven Proteine ausmachen, die jedoch aufgrund ihrer Flexibilität experimentell schwer zu charakterisieren und bisher kaum verstanden sind. Das Modell sagt außerdem die relative Stabilität des gefalteten Zustands von Proteinmutanten akkurat voraus, was mit bisherigen Simulationsmethoden aufgrund des Rechenaufwands nicht erreichbar war.
Prof. Dr. Cecilia Clementi ist Expertin im Bereich der Computersimulation von Biomolekülen. Sie forschte zunächst als Einstein Visiting Fellow an den Sonderforschungsbereichen „Einrüstung von Membranen – Molekulare Mechanismen und zelluläre Funktionen“ sowie „Skalenkaskaden in komplexen Systemen“ an der Freien Universität Berlin und ist die erste Wissenschaftlerin, die im Anschluss an die Förderung als Einstein Visiting Fellow dauerhaft für eine Tätigkeit in Berlin gewonnen werden konnte. Die US-Italienische Doppelbürgerin forschte und lehrte zuvor als Professorin für Chemie und Physik an der Rice University in Houston, Texas, USA. An der Freien Universität Berlin stärkt sie die Forschung in der theoretischen und computergestützten Biophysik und schlägt Brücken zur angewandten Mathematik.
Originalveröffentlichung
Charron, N.E., Bonneau, K., Pasos-Trejo, A.S. et al. Navigating protein landscapes with a machine-learned transferable coarse-grained model. Nat. Chem. (2025).
Meistgelesene News
Originalveröffentlichung
Charron, N.E., Bonneau, K., Pasos-Trejo, A.S. et al. Navigating protein landscapes with a machine-learned transferable coarse-grained model. Nat. Chem. (2025).
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.