22.07.2021 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

SARS-CoV-2: Achillesfersen im Viren-Erbgut

Mehrere kleine Moleküle identifiziert, die an bestimmte Stellen des SARS-CoV-2-Genoms binden, die fast nie durch Mutationen verändert werden

Bestimmte Regionen im SARS-CoV-2-Erbgut könnten sich als Ziel für künftige Medikamente eignen. Dies fanden jetzt Wissenschaftler der Goethe-Universität Frankfurt und ihre Kooperationspartner im internationalen COVID-19-NMR-Konsortium heraus. Mithilfe einer speziellen Substanzdatenbank identifizierten sie mehrere kleine Moleküle, die an bestimmte Stellen des SARS-CoV-2-Genoms binden, die fast nie durch Mutationen verändert werden.

Wenn SARS-CoV-2 eine Zelle befällt, schleust es sein Erbgut in die Zelle ein und programmiert die Zelle so um, dass diese zunächst Viren-Proteine und schließlich ganze Virenpartikel herstellt. Auf der Suche nach Wirkstoffen gegen SARS-CoV-2 haben Wissenschaftler sich bisher meist auf die viralen Proteine fokussiert, deren Blockade eine Vermehrung zu verhindern oder zu mindern verspricht. Doch auch der Angriff des viralen Erbguts, eines langen RNA-Moleküls, könnte die Vermehrung des Virus womöglich stoppen oder verlangsamen.

Einen wichtigen ersten Schritt zur Entwicklung einer solchen neuen Klasse von SARS-CoV-2-Medikamenten haben jetzt die Wissenschaftler des COVID-19-NMR-Konsortiums gemacht, das von Prof. Harald Schwalbe vom Institut für Organische Chemie und chemische Biologie der Goethe-Universität Frankfurt koordiniert wird. Sie identifizierten 15 kurze Abschnitte des SARS-CoV-2-Genoms, die bei verschiedenen Coronaviren sehr ähnlich sind und daher vermutlich essenzielle regulatorische Funktionen haben. Auch im Verlauf des Jahres 2020 waren diese Genomabschnitte nur äußerst selten von Mutationen betroffen.

Die Forscher ließen eine Substanzbibliothek von 768 kleinen, chemisch einfachen Molekülen mit den 15 RNA-Abschnitten reagieren und analysierten das Ergebnis mittels Kernresonanzspektroskopie (NMR-Spektroskopie). Bei der NMR-Spektroskopie werden Moleküle zunächst mit speziellen Atomsorten (Isotopen) markiert und dann einem starken Magnetfeld ausgesetzt. Durch einen kurzen Radiowellen-Impuls werden die Atomkerne angeregt und geben ein Frequenzspektrum ab, mit dessen Hilfe sich der Aufbau der Moleküle bestimmen lässt und welche Bindungen sie eingehen.

Auf diese Weise konnten die Forschenden um Prof. Schwalbe 69 kleine Moleküle finden, die an 13 der 15 RNA-Abschnitte banden. Prof. Harald Schwalbe: „Drei der Moleküle banden sogar spezifisch an nur einen RNA-Abschnitt. Wir konnten damit zeigen, dass sich die SARS-CoV-2-RNA sehr gut als potenzielle Zielstruktur für Medikamente eignet. Angesichts der zahlreichen Mutationen von SARS-CoV-2 sind solche konservativen RNA-Abschnitte, wie wir sie identifiziert haben, für eine Wirkstoffentwicklung besonders interessant. Und da in einer infizierten Zelle die Viren-RNA bis zu zwei Drittel der gesamten RNA ausmacht, sollten wir mit geeigneten Molekülen die Virusvermehrung erheblich stören können.“ Entsprechend hätten die Forschenden, so Schwalbe weiter, jetzt bereits Untersuchungen kommerziell verfügbarer Substanzen begonnen, die chemisch ähnlich zu den Bindungspartnern aus der Substanzbibliothek sind.

Fakten, Hintergründe, Dossiers
Mehr über Uni Frankfurt am Main
  • News

    In Zeitlupe gegen Antibiotikaresistenz

    Ob Bakterien gegen Antibiotika resistent sind, entscheidet sich oft an ihrer Zellmembran. Dort können Antibiotika auf dem Weg ins Zellinnere blockiert oder von innen nach außen katapultiert werden. Makrozyklische Peptide, eine neuartige Klasse von Antibiotika, bioaktiver Zellgifte und Hemms ... mehr

    Zweiter möglicher Wirkmechanismus von Remdesivir entdeckt

    Bei der Infektion einer Zelle sorgt SARS-CoV-2 nicht nur dafür, dass die Wirtszelle neue Viruspartikel herstellt. Das Virus unterdrückt auch Abwehrmechanismen der Wirtszelle. Dabei spielt das Virenprotein nsP3 eine zentrale Rolle. Durch Strukturanalysen haben Forscher:innen der Goethe-Unive ... mehr

    Wie Sauerstoffradikale vor Krebs schützen

    Sauerstoffradikale im Körper gelten gemeinhin als gefährlich, denn sie können so genannten oxidativen Stress auslösen, der mit der Entstehung vieler chronischer Krankheiten wie Krebs und Herz-Kreislauferkrankungen in Zusammenhang gebracht wird. In Untersuchungen an Mäusen haben Wissenschaft ... mehr