29.06.2020 - Max-Planck-Institut für Biologie des Alterns

Zirkuläre RNA lässt Fruchtfliegen länger leben

Der geheimnisvollen circRNAs einen Schritt näher gekommen

Ribonukleinsäure, oder RNA, ist Teil unseres genetischen Codes und in jeder Zelle unseres Körpers vorhanden. Die bekannteste Form der RNA ist ein einzelner linearer Strang, dessen Funktion gut erforscht ist. Es gibt aber auch eine andere Art von RNA, die so genannte "zirkuläre RNA" oder circRNA, die eine Endlosschleife bildet, die sie stabiler und weniger anfällig macht. CircRNAs sammeln sich mit zunehmendem Alter im Gehirn an; dennoch sind die biologischen Funktionen der meisten circRNAs nicht bekannt und stellen für die wissenschaftliche Gemeinschaft ein Rätsel dar. Jetzt sind Forscher des Max-Planck-Instituts für Biologie des Alterns in Köln der Antwort auf die Frage, was diese geheimnisvollen circRNAs tun, einen Schritt näher gekommen: Eine von ihnen trägt zum Alterungsprozess in der Fruchtfliege bei.

Carina Weigelt und andere Forscher der Gruppe um Linda Partridge, Direktorin am Max-Planck-Institut für Biologie des Alterns, untersuchten an Fruchtfliegen die Rolle der circRNAs im Alterungsprozess. Die Ergebnisse wurden in der wissenschaftlichen Zeitschrift Molecular Cell veröffentlicht. "Dies ist einzigartig, denn es ist nicht sehr gut verstanden, was circRNAs tun, insbesondere nicht im Zusammenhang mit dem Altern. Niemand hat sich bisher mit circRNAs im Kontext der Langlebigkeit befasst", sagt Carina Weigelt, die den Großteil der Studie durchgeführt hat. Sie fährt fort: "Jetzt haben wir eine circRNA identifiziert, die die Lebensdauer von Fruchtfliegen verlängern kann, wenn wir sie erhöhen, und sie wird durch Insulinsignale reguliert".

Eine spezifische circRNA beeinflusst die Lebensspanne über den Insulinsignalweg

Der Insulinweg reguliert Alterung, Stoffwechsel, Reproduktion und Wachstum bei Würmern, Fliegen und Menschen. Wird dieser Weg durch verschiedene Methoden blockiert, zum Beispiel durch den Einsatz genetisch veränderter Fliegen, denen das Insulin fehlt, leben die Fliegen länger. Aber es ist nicht bekannt, wie genau dies geschieht. Die Wissenschaftler glauben nun, dass ein Teil der Antwort bei den circRNAs liegen könnte. Sie fanden eine spezifische circRNA, circSulfatfrei (circSfl) genannt, die sich im Vergleich zu anderen circRNAs anders verhielt. CircSfl wurde in den langlebigen Fruchtfliegen, denen Insulin fehlte, im Vergleich zu normalen Fliegen in viel höheren Konzentrationen hergestellt. Wenn Fliegen genetisch so manipuliert wurden, dass sie einen höheren circSfl-Spiegel aufwiesen, lebten diese Fliegen auch länger. Diese Ergebnisse zeigen, dass circSfl nicht nur von Insulin abhängig ist - circSfl selbst kann auch die Lebensdauer von Fruchtfliegen direkt beeinflussen.

In den Zellen werden die notwendigen Proteine, die der Körper für alle möglichen Funktionen benötigt, aus normalen linearen RNAs hergestellt, aber im Allgemeinen nicht aus zirkulären RNAs. Wieder fanden die Wissenschaftler einen weiteren Unterschied zwischen circSfl und anderen zirkulären RNAs: Ein Protein wird tatsächlich aus circSfl hergestellt. Die genaue Funktion dieses Proteins ist nicht bekannt, aber Carina Weigelt sagt: "Das circSfl-Protein ist ähnlich, aber nicht identisch mit dem klassischen Sfl-Protein, das von der linearen Sfl-RNA stammt. Wir wissen nicht genau, wie das circSfl-abgeleitete Protein die Alterung beeinflusst, aber vielleicht interagiert es mit ähnlichen Proteinen wie das reguläre Sfl-Protein“.

Zirkuläre RNAs auch im Säugetiergehirn

Was bedeutet das für die Alternsforschung? Carina Weigelt sagt: "Wir wollen verstehen, wie das Altern funktioniert und warum die Fliegen, denen Insulin fehlt, langlebig sind. Es scheint, dass einer der Mechanismen circSfl ist. Wir wollen nun den Alterungsprozess weiter untersuchen, indem wir andere zirkuläre RNAs auch in anderen Tieren untersuchen. Da sich zirkuläre RNAs auch im Säugetiergehirn ansammeln, haben diese Befunde höchstwahrscheinlich auch wichtige Auswirkungen auf den Menschen."

  • Weigelt CM, Sehgal R, Tain LS, Cheng J, Eßer J, Pahl A, Dieterich C, Grönke S and Partridge L.; "An insulin-sensitive circular RNA that regulates lifespan in Drosophila"; Mol Cell; 2020.
Fakten, Hintergründe, Dossiers
  • Ribonukleinsäuren
  • RNA
  • circRNA
  • Lebensspanne
Mehr über MPI für Biologie des Alterns
  • News

    Zellinterne Kommunikation reguliert Langlebigkeit

    Wenn Menschen älter werden, fühlen sie sich oft schlapp und sind weniger mobil und aktiv. Dies kann teilweise darauf zurückgeführt werden, dass die Mitochondrien mit zunehmendem Alter an Aktivität verlieren. Tatsächlich erfolgt dieser Funktionsverlust nicht nur bei Mitochondrien des Mensche ... mehr

    Neue Membranen für zelluläres Recycling

    Es ist ein ständiger Frühjahrsputz in unseren Zellen: Das zelleigene Recyclingsystem, die sogenannte Autophagie, befüllt Müllsäcke mit zellulärem Abfall, transportiert sie zum Recyclinghof und stellt das zersetzte Material wieder zur Verfügung. Forscher vom Max-Planck-Institut für Biologie ... mehr

    Sauerstoffmangel programmiert Mitochondrien um

    Mitochondrien verbrennen Sauerstoff und stellen dadurch Energie für den Körper bereit. Ohne Sauerstoff oder bei Nährstoffmangel müssen Zellen schnell ihre Energieversorgung umstellen. Wissenschaftler vom Max-Planck-Institut für Biologie des Alterns haben nun in einer in Nature publizierten ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Biologie des Alterns

    Das 2008 gegründete Max-Planck-Institut (MPI) für Biologie des Alterns ist eines von über 80 unabhängigen, gemeinnützigen Instituten unter dem Dach der Max-Planck-Gesellschaft. Übergeordnetes Forschungsziel ist es, fundamentale Erkenntnisse zum Alterungsprozess zu gewinnen und so den Weg da ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Zucker im Profil

    Auf Zucker öffnet sich eine neue Perspektive. Ein Team um Wissenschaftler der Max-Planck-Institute für Festkörperforschung sowie für Kolloid- und Grenzflächenforschung haben mit einem Rastertunnelmikroskop erstmals abgebildet, wie einzelne Moleküle von Mehrfachzuckern gefaltet sind. Damit s ... mehr

    Neandertalergene in der Petrischale

    Protokolle zur Umwandlung von pluripotenten Stammzellen (iPSC) in Organoide, Mini-Organe, ermöglichen es Forschern Entwicklungsprozesse in verschiedenen Organen zu untersuchen und den Zusammenhang zwischen Genen und der Herausbildung von Gewebe zu entschlüsseln – insbesondere bei Organen, b ... mehr

    Die Verwandtschaft der Proteine

    Proteine steuern als eines der wichtigsten Biomoleküle das Leben - als Enzyme, Rezeptoren, Signal- oder Strukturmoleküle. Forscher am Max-Planck-Institut für Biochemie haben zum ersten Mal die Proteome von 100 verschiedenen Organismen entschlüsselt. Die ausgewählten Organismen stammen a ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr