22.11.2019 - Max-Planck-Institut für Pflanzenzüchtungsforschung

Selbsthemmende Gene ermöglichen neue Formen

Für die Evolution sind Gene besonders wichtig, die die Entwicklung eines Lebewesens von der Eizelle bis zum ausgewachsenen Organismus steuern. Veränderungen dieser Gene führen bei Pflanzen und Tieren häufig zu einem neuen Erscheinungsbild. Da Entwicklungsgene jedoch meist mehrere Vorgänge beeinflussen, bergen Mutationen das Risiko von "Kollateralschäden". Wissenschaftler des Max-Planck-Instituts für Pflanzenzüchtungsforschung in Köln haben nun herausgefunden, dass Gene die potenziellen Nebenwirkungen einer Mutation reduzieren, indem sie sich selbst hemmen. Auf diese Weise können neue Formen entstehen.

Angenommen, ein Vogel entwickelt eine neue Flügelform, mit der er besser fliegen und dadurch besser überleben kann. Wenn die zugrundeliegende Mutation gleichzeitig auch die Farbe des Vogels verändert und ihn dadurch für Weibchen weniger attraktiv macht, würde die an sich vorteilhafte Veränderung der Flügelform sehr wahrscheinlich wieder verschwinden. Wie also verhindert die Natur, dass die Nebenwirkungen von Genveränderungen Neuentwicklungen unterbinden? Ein internationales Team um Max-Planck-Direktor Direktor Miltos Tsiantis hat dies am Beispiel von Pflanzenblättern untersucht.  

Die Forscher haben in ihrer neuen Studie die Blattform des Behaarten Schaumkrauts untersucht, einem kleinen Unkraut, das Tsiantis und sein Team zu einem Modell für die Evolution der Blattform entwickelt hat. Die Studie baut auf früheren Arbeiten der Gruppe auf, in denen die Wissenschaftler ein Gen namens RCO gefunden haben. Das RCO-Gen bildet einen Transkriptionsfaktor – ein Protein, das andere Gene ein- oder ausschalten kann. Je nachdem, an welchen Stellen im sich entwickelnden Blatt RCO aktiv ist, entstehen andere Blattformen.

Potenziell schädliche Einflüsse werden blockiert

Den Forschern zufolge kann RCO seine eigene Aktivität unterdrücken. „Da die Selbstunterdrückung von RCO den Umfang seiner Aktivität einschränkt, werden potenziell schädliche Einflüsse auf die Entwicklung und Funktion von Zellen blockiert", erklärt Mike Levine, Direktor des Lewis-Sigler Institute for Integrative Genomics an der Universität Princeton und nicht an der Studie beteiligt.

Als nächstes identifizierten die Wissenschaftler die von RCO betroffenen Gene und fanden heraus, dass viele von ihnen für die lokalen Zytokinin-Spiegel regulieren. Zytokinin ist ein weit verbreitetes Pflanzenhormon, das das Wachstum von Zellen fördert. Kontrolliert RCO seine eigene Aktivität nicht mehr ausreichend, wird zu viel Zytokinin gebildet und die Blattform dadurch negativ verändert. Die Selbsthemmung könnte demnach dazu führen, dass neuartige Blattformen entstehen können, ohne dass sie der Pflanze schaden.

Schwache Bindungsstellen

Besonders interessant ist, dass sich RCO auf sehr unterschiedliche Weise selbst hemmen kann. Die Wissenschaftler haben entdeckt, dass die Selbsthemmung auf vielen schwachen Wechselwirkungen zwischen dem RCO-Protein und der regulatorischen DNA an schwachen Bindungsstellen beruht. "Solche Bindungsstellen können sich relativ schnell entwickeln und eröffnen so der Evolution einen einfachen Weg, die Aktivität eines Kontrollgens zu senken und dadurch viele andere Gene zu kontrollieren", erklärt Tsiantis.

Die Ergebnisse zeigen, dass schwache Bindungsstellen für Transkriptionsfaktoren eine wichtige Rolle bei der Entstehung neuer Formen spielen können. Die schwachen Bindungsstellen dämpfen die Auswirkungen von Veränderungen der RCO-Aktivität und erlauben eine Feinabstimmung des Zytokinin-Spiegels. Dies wiederum fördert das Auftreten komplexerer Blattformen wie Lappen oder Nebenblättern.

Man weiß inzwischen, dass Veränderungen in der Regulation von Entwicklungsgenen auch zu Krankheiten beim Menschen führen können. Wissenschaftler können nun die Varianten solcher Bindungsstellen für Transkriptionsfaktoren identifizieren, die Menschen anfälliger für bestimmte Erkrankungen machen oder – umgekehrt – die sie davor schützen.

  • Mohsen Hajheidari, Yi Wang, Neha Bhatia, Francesco Vuolo, José Manuel Franco-Zorrilla, Michal Karady, Remco A. Mentink, Anhui Wu, Bello Rilwan Oluwatobi, Bruno Müller, Raffaele Dello Ioio, Stefan Laurent, Karin Ljung, Peter Huijser, Xiangchao Gan and Miltos Tsiantis; "Autoregulation of RCO by low-affinity binding modulates cytokinin action and shapes leaf diversity"; Current Biology; 21 November, 2019
Fakten, Hintergründe, Dossiers
Mehr über MPI für Pflanzenzüchtungsforschung
Mehr über Max-Planck-Gesellschaft
  • News

    Die Zacken in der Viruskrone

    Das Glykoprotein Spike verleiht dem Coronavirus seinen Namen: Wie Zacken einer Krone stehen die Moleküle von der Virushülle ab. Forscher des Max-Planck-Instituts für Biophysik in Frankfurt analysieren nun die Struktur dieses Proteins. Auf diese Weise wollen sie potenzielle Ziele für Antikör ... mehr

    Corona-Epidemie: Die Effekte der Einschnitte

    Die Anstrengungen gegen die Corona-Epidemie in Deutschland zeigen erste Wirkung. Zumindest die Maßnahmen, die bis zum 16. März ergriffen wurden, haben die Ausbreitung des Virus Sars-CoV 2 verlangsamt. Das belegt die Modellrechnung eines Teams vom Max-Planck-Institut für Dynamik und Selbstor ... mehr

    Immunschub gegen das Coronavirus

    Der Verlauf der Corona-Pandemie wird stark davon abhängen, wie schnell Medikamente oder Impfstoffe gegen das SARS-Co-Virus 2 entwickelt werden können. Forscher wollen nun in mindestens einer Phase-III-Studie untersuchen, ob der ursprünglich von Wissenschaftlern des Max-Planck-Instituts für ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr