Meine Merkliste
my.bionity.com  
Login  

Systeme stabil halten: Erstmals künstliches Gen-Netzwerk in lebende Zelle eingebaut

Biotechnologie und Therapien verbessern

24.06.2019

ETH Zurich / Christine Khammash

Die Wissenschaftler entwickelten einen integrierenden Regelkreis (vorne als Schaltplan dargestellt) für Kolibakterien.

Sowohl die Natur als auch die Technik sind auf integrierende Feedback-Mechanismen angewiesen. Sie sorgen dafür, dass Systeme stabil bleiben. ETH-Forscher haben nun mittels synthetischer Biologie einen solchen Mechanismus von Grund auf neuentwickelt und erstmals als künstliches Gen-Netzwerk in eine lebende Zelle eingebaut. Hilfreich ist das für die Zelltherapie in der Medizin und für die Biotechnologie.

Der menschliche Körper sorgt dafür, dass die Kalziumkonzentration im Blut konstant bleibt. Ebenso hält der Autopilot ein Verkehrsflugzeug auf konstanter Flughöhe. Diese beiden Beispiele haben Gemeinsamkeiten: Körper und Autopilot verwenden dazu ausgeklügelte, sogenannte integrierende Feedback-Mechanismen. Forscher am Departement für Biosysteme der ETH Zürich in Basel ist es nun gelungen, einen solchen integrierenden Regelkreis erstmals in einer lebenden Zelle von Grund auf neu zu bauen, wie sie in der aktuellen Ausgabe der Zeitschrift Nature berichten. Mit ihrem Ansatz der synthetischen Biologie könnte es in Zukunft unter anderem möglich werden, biotechnologische Produktionsprozesse zu optimieren und Patienten mit Hormonstörungen mittels Zelltherapie zu helfen.

Trotz Umwelteinflüssen konstant

Erste technische Formen von integrierenden Feedback-Regelungen wurden vor über hundert Jahren von Schifffahrtsingenieuren entwickelt, um Schiffssteuerungen zu automatisieren. Seither kommt dieses Regelungsprinzip überall dort zum Einsatz, wo es darum geht, beispielsweise eine Richtung, Temperatur, Geschwindigkeit oder Höhe konstant und gegenüber äusseren Einflüssen stabil zu halten. Das Spezielle an einer integrierenden Regelung ist, dass die entsprechenden Korrekturen sowohl von der Höhe als auch der Dauer der Abweichung vom gewünschten Wert abhängig sind.

Auch in der Biologie sind während der Evolution Mechanismen entstanden, um zum Beispiel die Konzentration von Stoffen im Blut konstant zu halten. Dass es sich dabei ebenfalls um integrierende Regelkreise handelt, haben Forschende um Mustafa Khammash, Professor am Departement für Biosysteme, bereits vor einigen Jahren gezeigt. «Solche integrierenden Regelkreise sind äusserst resistent gegenüber unvorhergesehenen Umwelteinflüssen», erklärt der ETH-Professor. «Dies dürfte erklären, warum sich das Prinzip in der Evolution durchgesetzt hat, und warum es in der Technik so oft angewandt wird.»

Zusammenspiel zweier Moleküle

Khammash und seinem interdisziplinären Team von Regelungstheoretikern, Mathematikern und Biologen ist es nun gelungen, einen solchen integrierenden Feedback-Regelkreis erstmals als synthetisches Gen-Netzwerk in einem Bakterium aufzubauen. Ihr Feedback-Mechanismus fusst auf zwei Molekülen – A und B –, die sich aneinanderheften und auf diese Weise inaktiviert werden. Diese beiden Moleküle sind in der Lage, die Konzentration eines dritten Moleküls C konstant zu halten: Das System ist so aufgebaut, dass das Molekül B die Produktion von C fördert und die Produktionsrate von A von der Konzentration von C abhängig ist. Die Feedback-Schleife: Ist viel C vorhanden, wird mehr A produziert und somit mehr B inaktiviert, wodurch weniger C produziert wird.

Im Rahmen eines Machbarkeitsnachweises nutzten die ETH-Wissenschaftler dieses Prinzip, um die Herstellung eines in Kolibakterien eingeschleusten grün fluoreszierenden Proteins zu steuern. Dank des Feedback-Regelkreises stellten die Bakterien ständig gleich viel des Fluoreszenzfarbstoffs her und zwar auch dann, als die Wissenschaftler zu Testzwecken mit Hemmstoffen die Produktion des Farbstoffs zu dämpfen versuchten. In einem zweiten Experiment gelang es den Forschenden, eine Bakterienpopulation herzustellen, die mit konstanter Rate wuchs, das sogar noch, als die Wissenschaftler das Wachstum zu Testzwecken zu stören versuchten.

Biotech und Therapien verbessern

Dereinst zum Einsatz kommen könnte der neue Regelmechanismus in der Biotechnologie bei Bakterien, mit welchen Vitamine, Medikamente, Chemikalien oder Biotreibstoffe hergestellt werden. Der Mechanismus könnte dabei verwendet werden, um die Produktionsrate der Bakterien konstant auf einem optimalen Niveau zu halten.

Die ETH-Wissenschaftler sind nun auch daran, einen vergleichbaren Regelmechanismus für Säugetierzellen zu entwickeln, was weitere Anwendungen ermöglichen könnte. Dazu gehören Designerzellen mit genetischen Netzwerken, die im Körper von Patienten Hormone produzieren. Profitieren könnten davon beispielsweise Menschen mit Diabetes oder einer Schilddrüsenunterfunktion. Auch könnte man die synthetischen Regelkreise nutzen, um die Immuntherapie von Krebs zu verbessern. «Bei dieser Therapieform müssen Immunzellen genügend aktiv sein, um den Tumor bekämpfen zu können, jedoch nicht überaktiv, wodurch sie gesundes Gewebe schädigen würden», erklärt Khammash. «Mit einem Mechanismus wie dem unsrigen könnte man die Aktivität feinregulieren.»

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Wie mehrzellige Cyanobakterien Moleküle transportieren

    Forscher der ETH Zürich und der Universität Tübingen klären hochaufgelöst die Struktur und Funktion von Zell-Zell-Verbindungen bei fädigen mehrzelligen Cyanobakterien auf. Damit können sie nun erklären, wie diese Mikroorganismen den Transport von verschiedenen Stoffen zwischen einzelnen Zel ... mehr

    Hirnstimulation gegen Stresserkrankungen?

    ETH-Forscher nutzen Stimulationen des Hirns, um die Folgen von Stress zu erforschen, aber auch, um neue Therapien dagegen zu entwickeln. Vielleicht wird es dereinst sogar möglich, Hirnerkrankungen ohne Pillen buchstäblich im Schlaf zu heilen. Auf dem Netz finden sich Videos, deren Inhalte s ... mehr

    Doppelspurigkeiten in T-Zellen

    ETH-Forscher haben in den biochemischen Signalübertragungswegen von Immunzellen Redundanzen entdeckt. Das ist unter anderem für Weiterentwicklungen der Krebsimmuntherapie bedeutend. Mit der Krebsimmuntherapie erzielten Onkologen in vergangenen Jahren grosse Erfolge, insbesondere mit dem Ans ... mehr

  • Videos

    Kunstherz auf dem Prüfstand

    ETH-Forschende haben ein weiches Kunstherz aus Silikon entwickelt, das sich fast wie ein menschliches Herz bewegt. Produziert wurde das 390 Gramm schwere Silikonherz mit einem 3D-Drucker. mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.