03.04.2019 - Max-Planck-Institut für Infektionsbiologie

Mückenart ist für Ansteckung mit Malaria entscheidend

Die relative Häufigkeit zweier Moskito-Arten bestimmt das Übertragungsrisiko für den Menschen

Mücken übertragen Malaria – aber nicht jede Malariamücke ist gleich. Ein internationales Team mit Wissenschaftlern vom Max-Planck-Institut für Infektionsbiologie in Berlin hat entdeckt, dass manche Mückenarten den Malariaparasiten besser übertragen als andere. Die Forscher haben dafür in vier afrikanischen Ländern tausende Mücken gesammelt. Mit einem statistischen Modell konnten sie zeigen, dass nicht die Anzahl, sondern das Verhältnis, in dem zwei verschiedene Mückenarten vorkommen, die Häufigkeit des Malariaparasiten während der Regenzeit beeinflusst.

Der Malaria-Erreger Plasmodium wird von Mücken auf den Menschen übertragen. Manche Mückenarten übertragen den Parasiten mit sehr hoher Wahrscheinlichkeit und gelten deshalb als besonders gefährlich. Vor 18 Jahren hat Elena Levashina in Mücken aus dem Labor das Gen TEP1 entdeckt. Je nach Variante macht es die Mücken mehr oder weniger resistent gegen den Parasiten und kann so die Übertragungshäufigkeit von Malaria verringern. Unklar ist bislang geblieben, ob sich dieser Laborbefund auch auf die Natur übertragen lässt.

Um nachzuweisen, dass TEP1-resistente Mücken auch natürlich vorkommen, hat das Team von Elena Levashina eine Feldstudie in Afrika durchgeführt. Zusammen mit Forschern in Mali, Kenia, Burkina Faso und Kamerun hat das Team vier Jahre lang tausende Mücken gesammelt und analysiert. Die Wissenschaftler konnten die Varianten des Gens aus dem Labor auch in Mückenarten aus freier Wildbahn nachweisen. Die resistente Variante wurde jedoch nur in der Mückenart Anopheles coluzzi, nicht aber in ihrem nahen Verwandten, der Mückenart Anopheles gambiae gefunden.

Nach diesem Erfolg hat sich das Team auf eine Sammelstelle in der Sahelzone Malis konzentriert. Hier haben sie sowohl Malaria-resistente als auch nicht-resistente Mücken gefunden. Die Forscher haben daraufhin tausende infizierte Mücken während zweier Regenzeiten gesammelt und analysiert. Es zeigte sich, dass die Größe und Zusammensetzung der Mückenpopulationen bei dieser Untersuchung stark schwankten. Daraufhin testeten die Forscher mit einem Modell zur Vorhersage von Aktienkursen, wie Änderungen in der Mückenpopulation die Häufigkeit des Parasiten beeinflussen. Markus Gildenhard, Wissenschaftler aus Elena Levashinas Team am Max-Planck-Institut für Infektionsbiologie, hat dieses Modell zur Vorhersage der Anzahl von Parasiten angepasst und getestet, ob Einflüsse wie Temperatur, Gesamtanzahl der Mücken oder das Zahlenverhältnis der Mückenarten die Vorhersage der Parasitenhäufigkeit verbessern. So konnte er herausfinden, welche Faktoren überhaupt einen Einfluss auf die Häufigkeit des Malariaparasiten in dem Gebiet in Mali haben.

Sinkendes Infektionsrisiko

Das Ergebnis war überraschend: Entscheidend für die Häufigkeit des Parasiten ist nur das Zahlenverhältnis der beiden Arten zueinander. Bislang galten Anopheles coluzzi und Anopheles gambiae beide als gefährliche Malariaüberträger. Erhöht man aber im Modell den Anteil an Anopheles coluzzi – der Art mit resistenzverleihender Variante des Gens –, nimmt die Anzahl der Malariaparasiten ab. Die Gefahr für den Menschen, mit dem Erreger infiziert zu werden, sinkt unter diesen Umständen also.  

Durch den Klimawandel verändern sich die Bedingungen in der Sahelzone extrem schnell. Das kann Auswirkungen auf Mückenarten und so auch auf die Ansteckungsgefahr mit Malaria haben. Forscher, die Werkzeuge für gezielte Bekämpfungsmaßnahmen entwickeln, müssen jetzt das neue Wissen über lokale Mückenpopulationen anwenden. So wollen Forscher zum Beispiel Mücken genetisch so verändern, dass sich Unfruchtbarkeitsgene in der Population rasant schnell ausbreiten – ein Mechanismus, der „gene drive“ genannt wird. Mit diesem Ansatz wollen sie in Malariagebieten Mückenarten komplett ausrotten. Hier ist jedoch Vorsicht geboten. Wie die Forschung von Elena Levashina zeigt, kommt es auf die richtige Mückenart an: Wird die falsche Malariamücke aus einem Ökosystem entfernt – also etwa eine Art mit Resistenzgen – könnte eine noch gefährlichere schnell ihren Platz einnehmen – mit schwerwiegenden Folgen für die Gesundheit der Bevölkerung.

  • Markus Gildenhard et al.; "'Mosquito microevolution drives Plasmodium falciparum dynamics"; Nature Microbiology; 1 April, 2019
Fakten, Hintergründe, Dossiers
  • Anopheles gambiae
  • Anopheles coluzzi
Mehr über MPI für Infektionsbiologie
Mehr über Max-Planck-Gesellschaft
  • News

    Zirkuläre RNA lässt Fruchtfliegen länger leben

    Ribonukleinsäure, oder RNA, ist Teil unseres genetischen Codes und in jeder Zelle unseres Körpers vorhanden. Die bekannteste Form der RNA ist ein einzelner linearer Strang, dessen Funktion gut erforscht ist. Es gibt aber auch eine andere Art von RNA, die so genannte "zirkuläre RNA" oder cir ... mehr

    Zucker im Profil

    Auf Zucker öffnet sich eine neue Perspektive. Ein Team um Wissenschaftler der Max-Planck-Institute für Festkörperforschung sowie für Kolloid- und Grenzflächenforschung haben mit einem Rastertunnelmikroskop erstmals abgebildet, wie einzelne Moleküle von Mehrfachzuckern gefaltet sind. Damit s ... mehr

    Neandertalergene in der Petrischale

    Protokolle zur Umwandlung von pluripotenten Stammzellen (iPSC) in Organoide, Mini-Organe, ermöglichen es Forschern Entwicklungsprozesse in verschiedenen Organen zu untersuchen und den Zusammenhang zwischen Genen und der Herausbildung von Gewebe zu entschlüsseln – insbesondere bei Organen, b ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr