Meine Merkliste
my.bionity.com  
Login  

Bewegliche Mikrostrukturen aus dem 3D-Drucker

Ideal für Anwendungen in Biologie und Biomedizin

28.01.2019

Grafik: Marc Hippler, KIT

Das richtige Material macht’s: Die Objekte aus dem 3D-Drucker sind auch nach dem Druck noch beweglich und können etwa durch Temperaturänderung stimuliert werden.

Mit laserbasiertem 3D-Druck lassen sich heute schon beliebige Strukturen im Mikrometermaßstab herstellen. Für viele Anwendungen, insbesondere in der Biomedizin, wäre es jedoch vorteilhaft, wenn die gedruckten Objekte nicht starr, sondern schaltbar wären. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) konnten nun Mikrostrukturen drucken, die durch den Einfluss von Temperatur oder Licht ihre Form verändern.

Der 3D-Druck ist als Technik mit zahllosen Anwendungsfeldern etabliert. Als besonders vielversprechendes Verfahren gilt das direkte Laserschreiben: Ein computergesteuerter fokussierter Laserstrahl fungiert als Stift und erzeugt die gewünschte Struktur in der Druckertinte, hier ein Fotolack. Auf diese Weise können beliebige dreidimensionale Formen bis hinunter zu einer Größe von wenigen Mikrometern erzeugt werden. „Für viele Anwendungen vor allem in der Biologie und Biomedizin wäre es allerdings wünschenswert, nicht nur starre Strukturen zu erzeugen, sondern aktive Systeme, die nach dem Druckprozess noch beweglich sind, also zum Beispiel durch ein externes Signal ihre Form verändern können“, betont Professor Martin Bastmeyer vom Zoologischen Institut und dem Institut für Funktionelle Grenzflächen des KIT. Gemeinsam mit der Arbeitsgruppe von Professor Martin Wegener vom Institut für Angewandte Physik und dem Institut für Nanotechnologie des KIT sowie Chemikern aus Karlsruhe und Heidelberg wurde nun ein Druckverfahren für solche beweglichen Strukturen entwickelt. Für die Druckertinte verwenden sie besondere Materialien: Stimuli-responsive Polymere, deren Eigenschaften durch externe Signale modifiziert werden können. So verändert die chemische Verbindung poly(N-Isopropylacrylamide) ihre Form erheblich, wenn die Temperatur nur leicht über Raumtemperatur angehoben wird. Die so hergestellten 3D-Strukturen sind in wässriger Umgebung funktionsfähig und damit ideal für Anwendungen in Biologie und Biomedizin.

„Wir haben die Methode soweit entwickelt, dass wir auch komplexe Strukturen herstellen können, in denen die beweglichen Teile durch die äußere Stimulation nicht alle gleich reagieren, sondern unterschiedliche, aber genau definierte Reaktionen zeigen“, erläutert Marc Hippler, Erstautor der Studie. Möglich wird dies durch die Graustufenlithographie: Bei diesem Verfahren wird der Fotolack nicht an allen Stellen gleichstark, sondern abgestuft belichtet. Damit können die gewünschten Materialeigenschaften – und somit die Stärke der Bewegung bei einer bestimmten Temperaturänderung – sehr genau eingestellt werden. Mit Computersimulationen lassen sich die resultierenden Bewegungen präzise vorhersagen und erlauben daher ein rationales Design komplexer 3D-Strukturen.

Die Arbeitsgruppen um Martin Bastmeyer und Martin Wegener sind noch einen Schritt weitergegangen: Anstelle von Temperatur wird fokussiertes Licht als Steuersignal verwendet. Dies erlaubt es erstmals in einer komplexen, dreidimensionalen Anordnung einzelne Mikrostrukturen gezielt anzusteuern, was beispielsweise in mikrofluidischen Systemen zum Einsatz kommen könnte. Da der verwendete Fotolack bei Raumtemperatur geschaltet werden kann, ergeben sich zusätzlich Anwendungen in der biologischen Grundlagenforschung, wie zum Beispiel die gezielte mechanische Beeinflussung einzelner Zellen.

Fakten, Hintergründe, Dossiers
  • 3D Druck
  • Mikrostrukturen
  • Druckverfahren
  • 3D-Drucktechnik
Mehr über KIT
  • News

    Putzen mit Bakterien?

    Die Sonnenstunden werden mehr, die Temperaturen steigen – und der Frühjahrsputz steht an. Derzeit geraten Mittel mit Bakterien in Mode: Die probiotischen Reiniger enthielten „freundliche“ Mikroorganismen, die Schmutz, Staub und schädliche Bakterien auf natürliche Weise beseitigten, versprec ... mehr

    Versteckte Ordnung in der Unordnung

    Den Raum in Zellen mit optimalen geometrischen Eigenschaften einzuteilen, ist eine zentrale Herausforderung in vielen Bereichen der Wissenschaft und Technik. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) mit Kollegen aus mehreren Ländern festgestellt, dass bei amorphen, da ... mehr

    Materialdesign in 3D: vom Molekül bis zur Makrostruktur

    Mit additiven Verfahren wie dem 3D-Druck lässt sich inzwischen nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsam ... mehr

  • Forschungsinstitute

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.