Struktur und Funktion von Fotosyntheseprotein im Detail aufgeklärt

02.01.2019 - Deutschland

Der fotosynthetische Komplex I ist ein Schlüsselelement im fotosynthetischen Elektronentransport. Trotzdem war bislang wenig über ihn bekannt.

© RUB, Marquard

Jacqueline Thiemann und Marc Nowaczyk interessieren sich für Proteinkomplexe in Cyanobakterien, die sie an der Ruhr-Universität in großen Tanks halten.

Ein internationales Forscherteam hat die Struktur und Funktionsweise des fotosynthetischen Komplex I aufgeklärt. Der Membranproteinkomplex spielt eine wichtige Rolle in der dynamischen Anpassung von Elektronentransportprozessen bei der Fotosynthese. Die Kooperationspartner des Max-Planck-Instituts für Biochemie, der Osaka University und der Ruhr-Universität Bochum berichten über die Arbeiten zusammen mit Kollegen weiterer Einrichtungen in der Zeitschrift „Science. „Die Ergebnisse schließen eine der letzten großen Wissenslücken im Verständnis der fotosynthetischen Elektronentransportwege“, sagt der Privatdozent Dr. Marc Nowaczyk, der die Bochumer Projektgruppe „Cyanobacterial Membrane Protein Complexes“ leitet.

Biologische Stromkreise

Komplex I ist in fast allen lebenden Organismen zu finden. In Pflanzenzellen kommt er in zwei Varianten vor: einmal im Mitochondrium, dem Kraftwerk der Zelle, und einmal im Chloroplasten als Bestandteil der fotosynthetischen Maschinerie. In beiden Fällen ist er Teil einer Elektronentransportkette, die als biologische Variante eines elektrischen Stromkreises betrachtet werden kann. Diese biologischen Stromkreise treiben die molekularen Maschinen der Zelle an, die letztendlich dafür verantwortlich sind, Energie umzuwandeln und zu speichern. Die Struktur und Funktion des mitochondrialen Komplex I als Komponente der Zellatmung (Respiration) ist bereits gut untersucht, während der fotosynthetische Komplex I bislang wenig erforscht war.

Fotosynthese kurzgeschlossen

Mittels Kryoelektronenmikroskopie klärten die Forscher erstmals die molekulare Struktur einer fotosynthetischen Komplex-I-Variante auf. Sie zeigten, dass diese wesentliche Unterschiede zur respiratorischen Variante aufweist. Insbesondere der für den Elektronentransport verantwortliche Teil besitzt einen anderen Aufbau, da die Struktur für den zyklischen Elektronentransport in der Fotosynthese optimiert ist.

Durch diesen molekularen Kurzschluss werden Elektronen zurück in die fotosynthetische Elektronentransportkette eingespeist, anstatt gespeichert zu werden. „Wie das genau erfolgt und welche anderen Faktoren daran beteiligt sind, war bisher nicht zweifelsfrei geklärt“, erläutert Marc Nowaczyk. Das Forschungsteam bildete den Vorgang im Reagenzglas nach und zeigte, dass das Protein Ferredoxin dabei eine zentrale Rolle spielt. Mit spektroskopischen Methoden wiesen die Wissenschaftler außerdem nach, dass der Elektronentransfer von Ferredoxin auf Komplex I höchst effizient abläuft.

Molekulare Angel

Im nächsten Schritt analysierte die Gruppe, welche Strukturelemente auf molekularer Ebene für diese effiziente Interaktion verantwortlich sind. Dabei konnten sie zeigen, dass Komplex I einen besonders flexiblen Teil in seiner Struktur besitzt, der Ferredoxin wie eine Angel einfängt. Dadurch gelangt Ferredoxin in die optimale Bindeposition für die Elektronenübergabe.

„Somit konnten wir die Struktur mit der Funktion des fotosynthetischen Komplex I zusammenbringen und einen detaillierten Einblick in die molekularen Grundlagen der Elektronentransportvorgänge erhalten“, resümiert Marc Nowaczyk. „In Zukunft wollen wir auf dieser Basis künstliche Elektronentransportketten erschaffen, die neue Anwendungen im Bereich der Synthetischen Biologie ermöglichen sollen.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte