Meine Merkliste
my.bionity.com  
Login  

Wie aus dem Baukasten: Grüne Synthese wichtiger Moleküle entdeckt

Potenzial für Pharmazeutika

05.11.2018

© Maulide Group

Die Kreuz-Olefinierung als Selektive Kombinierung zweier Kohlenstoffbausteine.

Die Entwicklung neuartiger Methoden für die Synthese organischer Moleküle gehört zum Hauptforschungsgebiet von Nuno Maulide und seiner Arbeitsgruppe an der Fakultät für Chemie der Universität Wien. Dabei wurde nun eine umweltfreundliche Alternative zu konventionellen Synthesemethoden entdeckt, welche unter anderem die Synthese von einem Tuberkulose-Antibiotikum ermöglicht.

Der Herbst ist die Zeit der Ernte und bringt eine große Auswahl an frischen Äpfeln, Birnen und Kürbissen auf die Märkte. Andererseits ist der Herbst auch die Zeit von Erkältungen und grippalen Infekten. Doch was haben diese zwei Dinge miteinander gemein? Auf beiden Gebieten wurde in den letzten 200 Jahren durch Entwicklungen in der organischen Chemie entscheidende Verbesserungen erzielt: Volle Obst- und Gemüseregale sind u.a. das Ergebnis von Entwicklungen im Bereich der Pflanzenschutzmittel. Auch Erkältungen können dank des chemischen Fortschritts mit Nasenspray und Co angenehmer durchlebt werden.

Bei der Herstellung von Pflanzenschutzmitteln und Pharmazeutika aber auch von Vitaminen spielen bestimmte Strukturen, sogenannte Alkene oder Olefine, also Kohlenstoff-Kohlenstoff Doppelbindungen (C=C), eine entscheidende Rolle. Diese Strukturen werden mithilfe der Wittig-Reaktion hergestellt. Allerdings fallen bei dieser und verwandten Reaktionen große Mengen an chemischen Abfällen an, welche diese Synthesemethode nicht nur ökonomisch, sondern auch ökologisch unattraktiv macht. "Wir werden häufig von unseren Partnern in der Industrie darauf hingewiesen, dass Alternativen benötigt werden, auch der Umwelt zuliebe", so Nuno Maulide, Professor für Organische Synthese am Institut für Organische Chemie der Fakultät für Chemie an der Universität Wien.

Eine grüne Alternative

Nuno Maulide und Mitarbeiter des Instituts für Organische Chemie haben nun eine neue Syntheseroute für diese Moleküle entwickelt. Dafür werden zwei sogennante „Carbenvorstufen“, also Kohlenstoffbausteine mit nur zwei statt der üblichen vier Bindungen, formal zu einer Kohlenstoff-Kohlenstoff Doppelbildung (abgekürzt C=C) gekoppelt. Hierfür wird ein Ruthenium-Katalysator verwendet. Dabei fällt nur harmloses Stickstoffgas sowie ungiftiges und umweltfreundliches, Dimethylsulfoxid (DMSO) als Nebenprodukt an. DMSO wird in der Industrie vielseitig verwendet oder kann auch wieder in das Ausgangsmaterial überführt werden. "Das Resultat unserer Forschungsarbeit hat das Potenzial unseren ökologischen Fußabdruck zu mindern", erklärt Adriano Bauer, Doktorand und Co-Autor der Studie.

Potenzial für Pharmazeutika

Erstaunlich ist dabei die hohe Selektivität der Kupplung, denn ein häufiges Problem ist, dass diese zwei Kohlenstoffbausteine auch mit sich selbst kombinieren und somit alle drei möglichen Kupplungsprodukte in einem statistischen Verhältnis hervorbringen. „Die Kohlenstoffbausteine kann man mit Spielzeugsteinen vergleichen“, erklärt Maulide. „Zwei unterschiedliche Bausteine – A und B – werden ohne externen Einfluss miteinander kombinieren. Daraus können theoretisch drei verschiedene Bauwerke (AA, BB und AB/BA) entstehen. So wäre es auch in unserer Reaktion – aber wir haben entdeckt, dass das Reaktionsergebnis, durch einen bestimmten Katalysator auf nur ein Produkt eingeschränkt werden kann." Auch James Neuhaus, PostDoc und Co-Autor der Studie zeigt sich, erfreut, dass die Reaktion mit Ruthenium so gut funktioniert: "Das Metall ist relativ kostengünstig und bietet großes Potenzial."

Das Team konnte bereits zeigen, dass ein Molekül, welches ein effektives Antibiotikum gegen den Tuberkulose Errerger ist, durch eine sehr kurze Synthese hergestellt werden kann. "Ob weitere gesellschaftlich relevante Moleküle mit dieser Methode hergestellt werden können, wird sich zeigen. Wir wollen mit unserer Grundlagenforschung vor allem neue Impulse setzen und Weichen für eine umweltfreundliche Zukunft legen", so Maulide abschließend.

Fakten, Hintergründe, Dossiers
  • Moleküle
Mehr über Universität Wien
  • News

    Wenn Schwefel spurlos verschwindet

    In vielen Naturprodukten und Medikamenten spielen Dicarbonyle eine wesentliche Rolle – die Herstellung einiger solcher Verbindungen ist aber eine Herausforderung. In ihrer aktuellen Studie ist es Nuno Maulide und seinen Mitarbeitern von der Fakultät für Chemie der Universität Wien gelungen, ... mehr

    Malaria-Wirkstoff: Wenn die "Kopie" besser als das Original ist

    Die Synthese von Naturstoffen ist eines der Forschungsgebiete von Nuno Maulide und seiner Arbeitsgruppe an der Fakultät für Chemie der Universität Wien. Dazu gehört auch die Herstellung von strukturell verwandten Verbindungen, welche die Natur nicht erzeugen kann. Den Forschern gelang nun d ... mehr

    Wenn Strom durch Bakterienkabel fließt

    Die Böden der Meere und Süßgewässer sind von vertikalen, zentimeterlangen Ketten aus aneinandergereihten Zellen bestimmter Bakterien durchzogen. Diese Bakterienketten erlauben es den einzelnen Zellen, als vielzelliger Organismus in tiefen, sauerstoffarmen Zonen zu überleben. Damit verbinden ... mehr

  • Videos

    Ötzi Forschung: Das Erbe der Steinzeit-Bakterien

    Was verrät uns Ötzis Mageninhalt über die Besiedelungsgeschichte Europas? Der Bioinformatiker Thomas Rattei von der Uni Wien hat das Magenbakterium Helicobacter pylori analysiert und eine überraschende Entdeckung gemacht. mehr

  • Universitäten

    Department für Ernährungswissenschaften

    Das Department für Ernährungswissenschaften ist das einzige dieser Art an einer östereichischen Universität. Es beschäftigt sich daher als einzige universitäre Einrichtung mit allen Fragen rund um die Ernährung des Menschen in Forschung und Lehre. mehr

    Universität Wien

    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsst ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.