Nanomotoren helfen bei der Infektion mit fremdem Erbmaterial

28.02.2008

Einem internationalen Forschungskonsortium ist es gelungen, die elementaren Prozesse bei der Infektion mit fremdem Erbmaterial durch das Bakterium A. Tumefaciens zu verstehen. An der Untersuchung der Vorgänge, die sowohl in der Natur als auch bei der Herstellung transgener Pflanzen ablaufen, waren unter anderem das Swiss Nanoscience Institute an der Universität Basel sowie das Maurice E. Müller-Institut und das Friedrich Miescher-Institut in Basel beteiligt.

Bakterien dieses Typs zeichnen sich durch ihre besonders ausgeprägte Fähigkeit aus, Zellen mit fremdem Erbmaterial zu infizieren. Sie werden deshalb auch industriell genutzt, um transgene Pflanzen herzustellen. Forscherinnen und Forschern um Martin Hegner vom Trinity College in Dublin und Andreas Engel vom Biozentrum der Universität Basel ist es nun gelungen, mittels Experimenten an einzelnen Molekülen die Arbeitsweise des Bakteriums zu analysieren und dessen hohe Effizienz bei der transgenen Infektion zu verstehen.

Die Wissenschaftlerinnen und Wissenschaftler haben erkannt, dass das Protein VirE2 eine entscheidende Rolle spielt. VirE2 wird vom Bakterium synthetisiert. Das Bakterium schleust, bevor es seine infektiöse DNA in den Wirt einschiesst, Proteine (VirE2) durch den Infektionskanal ein. Sind die bakteriellen VirE2-Proteine im Innern der Pflanzenzelle angekommen, entwickeln sie grosse Kräfte, mit denen sie das fremde Erbmaterial des Bakteriums in die Zelle hineinziehen. Das Protein polymerisiert während dieses Vorgangs in eine helikale Form und bildet einen Schutzmantel für die fremde DNA, der sie vor dem Immunsystem der Zelle schützt.

Das helikale DNA-Protein-Gebilde wird schliesslich in den Zellkern transportiert, wo das eingeschleuste Erbmaterial in das Erbmaterial der Wirtszelle integriert wird. So wird in der Natur eine wuchernde Pflanzenkrankheit ausgelöst oder im Falle von industriellen Anwendungen die gewünschten Eigenschaften auf die Pflanze übertragen. Das Forschungsteam konnte die mechanische Aktivität des Proteins als Nanomotor direkt nachweisen.

Möglich war diese Untersuchung dank der interdisziplinären Zusammenarbeit von Forschenden in den Gebieten Biologie, Chemie und Physik. Die vorliegende Arbeit zeigt, wie bei der Untersuchung solch elementarer Prozesse auf Nanometerskala die Grenzen zwischen den klassischen Disziplinen verschwinden.

Originalbeitrag: Wilfried Grange, Myriam Duckely, Sudhir Husale, Susan Jacob, Andreas Engel, Martin Hegner; "VirE2: A Unique ssDNA-Compacting Molecular Machine"; PLoS Biology 2008, Vol. 6, No. 2.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte