Neuer Regulationsmechanismus entdeckt

12.10.2006

Vor einigen Jahren gelang es, sämtliche Gene des Menschen zu kartieren und in ihrem Aufbau zu bestimmen. Einige dieser Gene werden in allen Zellen des menschlichen Körpers abgelesen, andere können je nach Bedarf an- oder ausgeschaltet werden. Die Mechanismen, die zu diesem An- oder Ausschalten von Genen führen, sind nur unzulänglich verstanden und werden momentan weltweit von zahlreichen Wissenschaftlern untersucht.

Diese Schaltvorgänge sind äußerst komplex und werden unter maßgeblicher Beteiligung von Eiweißmolekülen (Proteinen) vermittelt. Nun ergibt sich allerdings die nächste Frage: Woher weiß das regulatorische Protein, wann es welches Gen regulieren soll? Um dieses Problem zu lösen, bedient sich die Natur einer Reihe von Tricks. Einige Proteine sind darauf spezialisiert, sich mit anderen Proteinen zu verknüpfen und damit ihre Eigenschaften zu verändern.

Die Arbeitsgruppe von Prof. Lienhard Schmitz am Biochemischen Institut des Fachbereichs Medizin der Justus-Liebig-Universität Gießen fand heraus, dass die unverknüpfte Form eines Regulatorproteins zur Aktivierung von Genen führt, während die verknüpfte Form im Abschalten von Genen resultiert. Der Verknüpfungsvorgang ist also ein zentraler Schalter, der die Entscheidung zwischen An- oder Abschalten von Genen vermittelt. Allerdings bleibt die Frage offen, wie der Verknüpfungsvorgang selber reguliert ist, mit anderen Worten: Wer reguliert den Regulator? Wie die Gießener Arbeitsgruppe weiter darlegt, ist diese Verknüpfung ihrerseits ein streng regulierter Prozess. Dabei stellt die Aktivierung des Regulatorproteins selbst die Weichen, ob es selber verknüpft wird (also Gene reprimiert) oder die unverknüpfte Form vorzieht, was in einer Genaktivierung resultiert. Die Gießener Arbeitsgruppe hofft, mit diesen Ergebnissen auch ein vertieftes Verständnis der Vorgänge zu erreichen, die der Fehlregulation von Genen bei Krankheitsprozessen zugrunde liegen.

Original publication: A. Roscic, A. Möller, M. A. Calzado, F. Renner, V. C. Wimmer, E. Gresko, K. Schmid Lüdi, M. L. Schmitz; "Phosphorylation dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2"; Molecular Cell 2006, 24, 77-89.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen