Meine Merkliste
my.bionity.com  
Login  

Mit Licht erzeugte Polymere zur Bakterienbekämpfung

Polymere könnten medikamentenresistente Bakterien auf neuartige Weise bekämpfen

17.08.2018

Forscher des Department of Chemistry und der Warwick Medical School haben einen Weg entwickelt, um große Polymerbibliotheken so zu synthetisieren, dass ihr Screening auf antimikrobielle Aktivität schneller und ohne die Notwendigkeit, versiegelte Vials zu verwenden, erfolgt.

Durch die Verwendung mehrerer "Bausteine" in ihren Polymeren wurden neue antimikrobielle Substanzen identifiziert, von denen einige entgegen den Vorhersagen das Bakterienwachstum zu hemmen scheinen.

Der Vorteil der Methode ist, dass sie das Screening von hunderten von verschiedenen Strukturen ermöglicht und es den Forschern ermöglicht, nach neuen Eigenschaften zu  suchen, was in diesem Fall eine antibiotische Aktivität war.

Antimikrobielle Mittel sind nicht nur bei der Behandlung von internistischen Erkrankungen und Infektionen, sondern auch in Körperpflegeprodukten wie Kontaktlinsen oder Shampoo, in Lebensmitteln oder als topische Cremes unverzichtbar. Das Bewusstsein für antimikrobielle Resistenz und die Notwendigkeit, innovative Lösungen zur Bekämpfung mikrobieller Infektionen zu entwickeln, wächst.

Traditionelle antimikrobielle Wirkstoffe (wie Penicillin) hemmen wichtige zelluläre Prozesse. Das Warwick-Team unter der Leitung von Professor Matthew Gibson wurde stattdessen von Wirtsabwehrpeptiden inspiriert, die ein breites Spektrum antimikrobieller Wirkstoffe darstellen und durch Aufbrechen der Bakterienmembran funktionieren.

Professor Matthew Gibson von Warwick's Department of Chemistry and Warwick Medical School, ebenfalls Hauptautor der Arbeit, sagte: "Während viele Menschen erfolgreich antimikrobielle Peptide mit Polymeren imitiert haben, war der limitierende Schritt die Anzahl der verschiedenen Kombinationen von Bausteinen, die Sie verwenden können. Wir haben eine einfache Robotik und eine lichtgesteuerte Polymerisation verwendet, die es uns erlaubt, die Chemie offen für die Luft zu machen, ohne versiegelte Fläschchen, die für die meisten Polymersynthesen unerlässlich sind".

Dr. Sarah-Jane Richards, von der Gibson Group an der University of Warwick und der Hauptautor des Werks, sagte: "Wir haben die Polymere so vorbereitet, dass wir am Ende der Reaktion mit der Robotik Polymere direkt mit Bakterien mischen, um nach unerwarteter Aktivität zu suchen, die wir erreicht haben. Überraschenderweise scheinen die besten Materialien die Bakterien nicht, wie von uns vorhergesagt, auseinander zu brechen, sondern hemmen ihr Wachstum. Wir werden das weiter untersuchen."

Fakten, Hintergründe, Dossiers
  • Antimikrobielle Wirkstoffe
  • Robotik
  • Synthesebausteine
  • Peptide
  • Antibiotikaresistenzen
  • zelluläre Prozesse
  • antimikrobielle Peptide
  • photochemische Reaktionen
Mehr über University of Warwick
  • News

    Zellgewebe darf nicht einfrieren

    Mit Zuckern, Aminosäuren und speziellen Antifrostproteinen verhindert die Natur Frostschäden an Zellen. Um Zellkulturen vor Schäden durch Einfrieren zu bewahren, versetzen Menschen diese mit Lösungsmitteln und synthetischen Polymeren. Britische Wissenschaftler haben jetzt Natur und Synthese ... mehr

    Platin plus Licht gegen Krebs

    Nach wie vor ist die Forschung auf der Suche nach einer Krebstherapie, die effektiv Tumorzellen zerstört, umgebendes gesundes Gewebe und den Organismus aber schont. Ein interessanter Ansatz wäre ein lichtaktivierter Wirkstoff: Eine inaktive Vorstufe wird verabreicht, das kranke Gewebe gezie ... mehr

    Rostige Würmer im Hirn

    Eisen ist für uns lebenswichtig, beispielsweise als Bestandteil von Hämoglobin. Eisen kann aber auch schwere Schäden verursachen: So sollen Eisenablagerungen im Hirn für bestimmte Formen der neurodegenerativen Erkrankungen Morbus Parkinson, Huntington und Alzheimer, mit verantwortlich sein. ... mehr

  • Universitäten

    University of Warwick

    mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.