17.02.2020 - Max-Planck-Institut für Biochemie

Zur richtigen Zeit am richtigen Ort

Aktivierungskette des Proteinabbaus entschlüsselt

Proteine sind molekulare Arbeitspferde der Zelle, die bestimmte Aufgaben erfüllen. Dabei ist es wichtig, dass der Zeitpunkt der Proteinaktivitäten genauestens kontrolliert wird. Wenn die Proteine ihre Aufgaben erfüllt haben, können Prozesse beendet werden, die unnötig oder schädlich sind. Um den Zeitpunkt zu steuern, wird eine Markierung - "Ubiquitin" genannt - an unerwünschte Proteine angebracht um es abzubauen. Obwohl man wusste, dass komplexe molekulare Maschinen Ubiquitin anbringen können, war unklar, wie die Markierung erfolgt. Forscher am MPIB haben in Zusammenarbeit mit der Universität von Nevada, Las Vegas diese Mechanismen aufgedeckt und in der Zeitschrift Nature veröffentlicht.

Zahlreiche zelluläre Vorgänge wie Immunantworten oder die Zellteilung werden von verschiedenen Proteinen in einer bestimmten Reihenfolge gesteuert. Damit die Zelle richtig funktioniert, müssen die Proteine bei Bedarf nach getaner Arbeit abgebaut werden. Wenn krankheitsverursachende Veränderungen den rechtzeitigen Proteinabbau blockieren, könnten Proteine zur falschen Zeit arbeiten, was zu Krankheiten wie Krebs, Herzkrankheiten und Entwicklungsstörungen führen kann.

Proteinabbau kontrollieren

Zellen „wissen", wie man Proteine abbaut, indem man unerwünschte Proteine zum Abbau mit einem anderen Protein namens "Ubiquitin" markiert. Der als „Ubiquitinierung“ bekannte Markierungsprozess wird von molekularen Maschinen, den sogenannten E3-Ligasen, durchgeführt. Dabei ist es wichtig, dass die E3-Ligasen selbst an der richtigen Stelle und zur richtigen Zeit in den Zellen ein- und ausgeschaltet werden. Der „Einschalter" für etwa ein Drittel aller E3-Ligasen ist ein kleines Protein, das wie Ubiquitin aussieht und NEDD8 genannt wird.

NEDD8 am Steuer der Proteinabschaltung

Obwohl die einzelnen Komponenten dieser Proteinabbaumaschine bekannt waren, war unklar wie NEDD8 die E3-Ligasen einschaltet und die Markierung Zielproteins mit Ubiquitin ermöglicht. "Dies ist besonders wichtig, weil es Medikamente in klinischen Studien gegen Krebs gibt, die NEDD8 blockieren, und einige infektiöse Bakterien NEDD8 manipulieren, um zelluläre Prozesse zu stören", sagt Brenda Schulman, Leiterin der Abteilung "Molekulare Maschinen und Signalwege" am MPIB. Schulman und ihr Team haben nun die molekularen Mechanismen dieser Ubiquitinierung entschlüsselt. "Wir untersuchten die Wirkungsweise eines durch NEDD8 angeschalteten E3-Ligase. Dabei fanden wir heraus, wie NEDD8 eine E3-Molekularmaschine dazu bringt, die Ubiquitin Markierung an sein Zielprotein zu übertragen. Das ist der Schlüssel, um Proteine zum richtigen Zeitpunkt auszuschalten, wenn sie in einer Zelle nicht mehr benötigt werden", so Schulman.

Mit Hilfe der Kryo-Elektronenmikroskopie ist es den Wissenschaftlern gelungen, eine wichtige E3-Ligase sichtbar zu machen, die durch NEDD8 eingeschaltet wurde und sich im Prozess der Ubiquitin-Markierung eines Zielproteins befand. "Dazu haben wir jeden Schritt des Markierungsprozesses genau unter die Lupe genommen. Der natürliche Prozess läuft innerhalb von Sekundenbruchteilen ab, danach fällt die molekulare Markierungsmaschine auseinander. Die Erfassung dieses normalerweise kurzlebigen Zustands war besonders schwierig", erklärt Kheewoong Baek, der Erstautor der Studie. Die molekularen Maschinen der E3-Ligase steuern viele zelluläre Prozesse.

"Der entschlüsselte Mechanismus erklärt nicht nur den normalen Prozess in der Zelle, sondern auch was bei einigen Krebsarten, mit Mutationen der E3-Maschine, schiefläuft. Zusätzlich kann es auch als Leitfaden für die Entwicklung von Therapien, zur Markierung unerwünschter Proteine mit Ubiquitin, dienen. Wir hoffen, dass dies langfristig helfen könnte, krebsverursachende Proteine abzubauen", fasst Schulman zusammen.

Fakten, Hintergründe, Dossiers
  • Ubiquitinierung
  • Kryo-Elektronenmikroskopie
Mehr über MPI für Biochemie
  • News

    Die Verwandtschaft der Proteine

    Proteine steuern als eines der wichtigsten Biomoleküle das Leben - als Enzyme, Rezeptoren, Signal- oder Strukturmoleküle. Forscher am Max-Planck-Institut für Biochemie haben zum ersten Mal die Proteome von 100 verschiedenen Organismen entschlüsselt. Die ausgewählten Organismen stammen a ... mehr

    Biologische Maschine produziert ihre eigenen Bauteile

    Die synthetische Biologie will nicht nur Prozesse des Lebens beobachen und beschreiben, sondern auch nachahmen. Ein Schlüsselmerkmal des Lebens ist die Replikationsfähigkeit, also die Selbsterhaltung eines chemischen Systems. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Mar ... mehr

    Das Rezept für eine Fruchtfliege

    Mittlerweile kennt man viele der Proteine, die für den Aufbau eines multizellulären Organismus erforderlich sind. Jedoch ist weitgehend unklar, wie viele Kopien jeder Proteinart vorhanden sind und benötigt werden, damit sich ein vollständiger Organismus entwickeln kann. Forscher am Max-Plan ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Corona-Folgen für das Erdsystem

    COVID-19 wirkt sich unmittelbar auf die Gesundheit, die Wirtschaft und das soziale Wohlergehen in unserem persönlichen Leben aus. Doch die Folgen für das gesamte Erdsystem, insbesondere solche, die sich aus den weltweit verhängten Kontaktbeschränkungen ergeben, könnten sehr viel weitreichen ... mehr

    Brüche im Erbgut

    Brüche und Umlagerungen im Erbgut können zu schweren Erkrankungen führen, selbst wenn die Gene dabei intakt bleiben. Eine zuverlässige und genaue Diagnose solcher Defekte verspricht Hi-C, eine Methode zur Analyse der dreidimensionalen Struktur von Chromosomen, die derzeit in der Klinik noch ... mehr

    Neandertaler besaßen niedrigere Schmerzschwelle

    Schmerz wird durch spezielle Nervenzellen übertragen, die aktiviert werden, wenn potenziell schädliche Einflüsse auf verschiedene Teile unseres Körpers treffen. Diese Nervenzellen verfügen über einen speziellen Ionenkanal, der eine Schlüsselrolle beim Auslösen des elektrischen Schmerzimpuls ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr