25.04.2019 - Deutsches Zentrum für Neurodegenerative Erkrankungen e.V.

Wie Gehirnzellen des Fisches auf Alzheimer reagieren

Im Gegensatz zum Menschen haben Zebrafische hervorragende regenerative Fähigkeiten: Wenn deren Gehirnzellen durch Krankheit oder Verletzung verloren gehen, können sie aus sogenannten Vorläuferzellen leicht nachwachsen. Mit innovativen Methoden haben Forscher am DZNE und der Technischen Universität Dresden diese Vorläuferzellen nun genauer untersucht und festgestellt, dass sie aus acht verschiedenen Subpopulationen bestehen. In einem Fischmodell, mit dem sich die Anhäufung sogenannter Amyloid-Proteine (ein Merkmal der Alzheimer-Erkrankung) nachbilden lässt, reagierten nur einige dieser Populationen mit einer erhöhten Teilungsrate, um verlorene Zellen zu ersetzen. Durch eine genaue Charakterisierung der molekularen Grundlagen, die sich hinter der Teilungsfähigkeit dieser Vorläuferzellen verbirgt, möchten die Wissenschaftler neue Zielmoleküle für die Behandlung der Alzheimer-Erkrankung beim Menschen identifizieren.

Bei der Alzheimer-Erkrankung bilden sich toxische Eiweißablagerungen im Gehirn, sogenannte Amyloid-β-Aggregate, die den Zelltod von Nervenzellen verursachen. „Ein Großteil der Alzheimer-Forschung konzentriert sich darauf, das Sterben von Neuronen zu verhindern“, sagt Caghan Kizil, Leiter der Helmholtz-Young-Investigator-Gruppe am DZNE in Dresden, Forscher am Zentrum für Regenerative Therapien an der TU Dresden (CRTD)und der Hauptautor der Studie. „Wir verfolgen einen alternativen Ansatz, indem wir anstreben, die Regeneration verlorener Zellen anzuregen.“

Dies ist eine große Herausforderung, denn die regenerativen Fähigkeiten des menschlichen Gehirns sind recht bescheiden. Im erwachsenen Gehirn gibt es zwar einige Stammzellen, die neue Nervenzellen hervorbringen, aber sie befinden sich in nur zwei begrenzten Hirnregionen und erzeugen nur wenige verschiedene Zelltypen. Im Gegensatz dazu kann verlorenes Hirngewebe in Zebrafischen problemlos nachwachsen.

„Zebrafische und Säugetiere sind evolutiv verwandt. Wir glauben daher, dass die Regenerationsfähigkeit auch bei Säugetieren unterschwellig vorhanden ist und dass man sie wachrufen kann“, sagt Kizil. „Wir können aus unseren Analysen der molekularen Signalwege und zellulären Wechselwirkungen in Zebrafischen lernen und dieses Wissen nutzen, um besser zu verstehen, wie wir die Regeneration auch bei Mäusen und letztendlich beim Menschen anregen können.“

In der aktuellen Studie haben die Wissenschaftler Zellen im Zebrafisch-Gehirn mit bisher unerreichter Genauigkeit charakterisiert. Mithilfe der Einzelzellsequenzierung, einer hochentwickelten Methode zur Bestandsaufnahme aller aktiven Gene in einzelnen Zellen, identifizierten Kizil und seine Kollegen acht verschiedene bisher unbekannte Vorläuferpopulationen. Als sie das Gehirn mit Alzheimer-typischen toxischen Amyloid-β-Aggregaten reizten, erhöhten einige dieser Populationen, aber nicht alle, die Teilungsrate und produzierten neue Zellen.

Darüber hinaus deckten die Forscher auf, wie sich die molekularen Programme einzelner Zellpopulationen in Reaktion auf Amyloid-β verändern. Diese Daten können nun genutzt werden, um Gene zu identifizieren, die der Regeneration im Fischmodell zugrunde liegen. Beispielsweise zeigten die Wissenschaftler, dass ein Signalmolekül namens Fibroblasten-Wachstumsfaktor 8 (fibroblast growth factor 8) die Teilungsfähigkeit jener Vorläufer- und Stammzellpopulationen induziert, die auch auf Amyloid-β ansprechen.

Nachdem die Wissenschaftler nun Zellpopulationen und Signalwege identifiziert haben, die der Regeneration in Antwort auf Amyloid-β zugrunde liegen, können sie diese Daten nun auf Mäuse und Menschen übertragen. Welche Zellen im Säugerhirn entsprechen den neu identifizierten Zebrafisch-Vorläuferpopulationen? Können sie zur Teilung angeregt werden, wenn man die richtigen Fäden zieht? „Wir werden diese Fragen zuerst bei der Maus als Modellsystem angehen“, sagt Kizil. „Wir hoffen jedoch, dass unsere Forschung Strategien aufzeigen wird, wie man die Regeneration auch beim Menschen fördern und wie man dies als neuen Ansatz zur Alzheimertherapie nutzen kann.“

Fakten, Hintergründe, Dossiers
  • Proteinaggregate
  • Beta-Amyloid
  • Regeneration
  • Fibroblasten-Wachst…
Mehr über Deutsches Zentrum für Neurodegenerative Erkrankungen
  • News

    Putzfimmel im Gehirn

    Synapsen bestehen aus Hunderten verschiedener Proteine. Damit sie Hirnsignale richtig übertragen können, müssen ihre Bausteine ständig auf Funktionalität überprüft und bei Verschleiß durch neue ersetzt werden. Ein Forscherteam des Leibniz-Institutes für Neurobiologie Magdeburg, vom Deutsche ... mehr

    Immunzellen gegen Alzheimer?

    Forscher des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE), der Ludwig-Maximilians-Universität (LMU) München und des US-Unternehmens Denali Therapeutics haben einen Ansatz entwickelt, um Immunzellen des Gehirns so zu stimulieren, dass sie möglicherweise einen besseren Schutz ... mehr

    Immunabwehr im Gehirn als Schutzfaktor gegen Alzheimer?

    Die LMU-Demenzforscher Christian Haass und Michael Ewers haben einen Schutzfaktor gefunden, der den Ausbruch der Alzheimer Demenz möglicherweise verzögern kann. Wissenschaftler am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) und am Institut für Schlaganfall- und Demenzforschu ... mehr

  • Forschungsinstitute

    Deutsches Zentrum für Neurodegenerative Erkrankungen e.V.

    Das DZNE ist ein Forschungszentrum in der Helmholtz-Gemeinschaft deutscher Forschungszentren, das sich mit neurodegenerativen Erkrankungen beschäftigt. Sein Leitbild ist es, Ursachen und Risikofaktoren, die Neurodegeneration vorbestimmen, zu verstehen und neue Therapie- und Pflegestrategien ... mehr

Mehr über TU Dresden
  • News

    Auf der Suche nach der Nadel im Heuhaufen

    Das Ziel: Auf schnellstem Wege neue Wirkstoffkombinationen für die Covid-19-Therapie identifizieren, klinische Tests durchführen und mit den Patienten den Kampf gegen das Virus gewinnen. Die Methode: Ein großangelegter Forschungswettbewerb, der Milliarden von Molekülen untersucht und diejen ... mehr

    Biologisch aktive Naturstoffe für den Kampf gegen Krebs

    Phytoalexine sind biologisch aktive sekundäre Pflanzenstoffe, die in den letzten Jahren aufgrund ihrer gesundheitsfördernden Wirkung beim Menschen und ihrer Bedeutung für die Pflanzengesundheit viel Aufmerksamkeit erregt haben. Chemiker der TU Dresden haben nun einen neuen und sehr effizien ... mehr

    Was tun unsere Zellen unter Stress?

    Auch Zellen können gestresst sein. Und dieser Stress – ausgelöst z.B. durch Gifte oder hohe Temperaturen – ist für sie oft lebensbedrohlich. Zum Glück sind unsere Zellen Meister der Stressbewältigung mit einer ganz eigenen Strategie: Sie hören auf zu wachsen, produzieren schützende Moleküle ... mehr

  • White Paper

    Oberflächenfunktionalisierung von Goldschichten zur gerichteten Immobilisierung von Biomolekülen

    Die SPR-Spektroskopie gehört zu den bevorzugt eingesetzten Detektionsmethoden in der Biosensorik, da sie Veränderungen des Brechungsindexes, hervorgerufen durch die Bildung des Immunkomplexes, ohne zusätzliche Modifizierung der Reaktionspartner erfas mehr