Meine Merkliste
my.bionity.com  
Login  

Bisher unbekannte Funktion von Blutgefäßen im Gehirn entdeckt

28.08.2018

Cecilia Llao-Cid

Blutgefässe (in Rot) in enger Kommunikation mit sich vermehrenden Nervenzellen in der Maeuse-Grosshirnrinde eines zehn Tage alten Embryos.

Die Funktion und Homöostase (Selbstregulierung) des Gehirns hängt von der Kommunikation innerhalb des komplexen Zellnetzwerks ab, das dieses Organ ausmacht. Dementsprechend muss die Entwicklung der verschiedenen Zellengruppen im Gehirn räumlich und zeitlich koordiniert werden. Die Gruppe um Prof. Dr. Amparo Acker-Palmer vom Buchmann Institut für Molekulare Lebenswissenschaften und dem Institut für Zellbiologie und Neurowissenschaften der Goethe-Universität berichtet in der neuesten Ausgabe der Fachzeitschrift „Science“ über eine bisher unbekannte Funktion von Blutgefäßen bei der Orchestrierung der korrekten Entwicklung von neuronalen Zellnetzwerken im Gehirn.

Dass das Blutgefäßsystem im Gehirn notwendig ist, um Neuronen und Gliazellen (Zellen im Nervengewebe, die sich strukturell und funktionell von den Nervenzellen unterscheiden) mit Sauerstoff und Nährstoffen zu versorgen, um den Stoffwechsel der neuronalen Netzwerke zu unterstützen, ist bekannt. „Wir wissen seit einigen Jahren, dass das Gefäß- und Nervensystem einen sehr ähnlichen Bausatz verwenden, um sich zu entwickeln und zu funktionieren. Daher sind wir davon ausgegangen, dass solch ein gemeinsamer Bausatz auch dafür verwendet werden könnte, dass sich beide Systeme synchron entwickeln und miteinander kommunizieren, um so eine korrekte Hirnfunktion zu gewährleisteten“, erklärt Acker-Palmer.

Um die Kommunikation zwischen Blutgefäßen und neuronalen Zellen zu untersuchen, hat die Gruppe um Acker-Palmer verschiedene Aspekte der neurovaskulären Entwicklung in den Blick genommen. Die Gefäßentwicklung in der Mäusenetzhaut nutzten die Wissenschaftler dafür als bewährtes Modell, um für das Gefäßwachstum wichtige Moleküle zu untersuchen. Dabei haben sie entdeckt, dass ein Molekül, Reelin, das die neuronale Migration beeinflusst, unabhängig davon auch in der Lage ist, mit einem sehr ähnlichen Signalmechanismus das Wachstum von Gefäßen zu beeinflussen, indem es den ApoER2-Rezeptor und das Dab1-Protein in Endothelzellen aktiviert.

Eine sehr wichtige Struktur im Gehirn ist die Großhirnrinde, die eine Schlüsselrolle bei sämtlichen Grundfunktionen wie Gedächtnis, Aufmerksamkeit, Wahrnehmung, Sprache und Bewusstsein spielt. Neuronale Zellen in der Großhirnrinde sind in Schichten organisiert, die sich während der embryonalen Entwicklung bilden. „Wir haben uns dafür entschieden, ausschließlich die Signalkaskade von Reelin aus den Endothelzellen zu eliminieren und dann zu schauen, wie das die Organisation von Neuronen und Gliazellen in der Großhirnrinde beeinflusst“, erklärt Acker-Palmer. Auf diese Weise kamen die Wissenschaftler auf die erstaunliche Erkenntnis, dass Endothelzellen die Neuronen zu ihrer korrekten Position in der Großhirnrinde anleiten. Als Wirkmechanismus konnten die Wissenschaftler zeigen, dass Endothelzellen Laminin sekretieren, das in der extrazellulären Matrix um die Gefäße angesammelt wird, um die Fasern der Gliazellen richtig zu verankern, die für die korrekte neuronale Migration und korrekte Entwicklung der Großhirnrinde notwendig sind.

Im reifen Gehirn umwickeln Gliazellen auch die Kapillargefäße und verhindern, dass schädliche Substanzen aus dem Blutstrom in das Gehirn eindringen können. Diese sogenannte „Blut-Hirn-Schranke“ ist eine wesentliche Struktur, die im Gehirn entwickelt wird, um die Homöostase (Selbstregulierung) aufrechtzuhalten. Bedeutsam ist, dass Acker-Palmer und ihr Team darüber hinaus gezeigt haben, dass die gleichen Signalkaskaden, die Endothelzellen in der Großhirnrinde benutzen, um neuronale Migration zu orchestrieren, auch dafür benutzt werden, die Kommunikation an der Blut-Hirn-Schranke herzustellen. „Einige neuropsychiatrische und neurodegenerative Störungen sind mit einer abnormalen neurovaskulären Kommunikation in Verbindung gebracht worden. Von daher ist es wesentlich, die Signalwege und Mechanismen in dieser Kommunikation zu verstehen, um neue Ansätze für die Behandlung von Demenz und psychische Erkrankungen zu finden“, so die Frankfurter Professorin.

Fakten, Hintergründe, Dossiers
  • Gehirn
  • Blutgefäße
  • Homöostase
  • Gliazellen
  • Blut-Hirn-Schranke
Mehr über Uni Frankfurt am Main
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.