Meine Merkliste
my.bionity.com  
Login  

Chiralität in "Echtzeit"

11.01.2019

M. Oppermann, EPFL

Eine Darstellung der Chiralität in einem Molekül

In der Natur können bestimmte Moleküle mit der gleichen chemischen Zusammensetzung in zwei verschiedenen Formen existieren, die Bilder voneinander widerspiegeln, ähnlich wie unsere Hände. Diese Eigenschaft wird als "Chiralität" bezeichnet und Moleküle mit unterschiedlicher Chiralität werden als Enantiomere bezeichnet. Enantiomere können ganz unterschiedliche chemische oder biologische Eigenschaften aufweisen, und ihre Trennung ist ein wichtiges Thema in der Arzneimittelentwicklung und in der Medizin.

Die übliche Methode zum Nachweis von Enantiomeren ist die Zirkulardichroismus-(CD)-Spektroskopie. Es nutzt die Tatsache, dass das in eine zirkuläre Welle polarisierte Licht (wie ein Whirlpool) von links- und rechtshändigen Enantiomeren unterschiedlich absorbiert wird. Die stationäre CD-Spektroskopie ist ein wichtiges Strukturwerkzeug in der (bio)chemischen Analyse.

Während ihrer Funktion durchlaufen Biomoleküle strukturelle Veränderungen, die ihre chiralen Eigenschaften beeinflussen. Die Untersuchung dieser in Echtzeit (d.h. zwischen 1 Pikosekunde und 1 Nanosekunde) bietet einen Einblick in ihre biologische Funktion, aber dies war eine Herausforderung im tiefen UV-Spektrum (Wellenlängen unter 300 nm), wo die meisten biologisch relevanten Moleküle wie Aminosäuren, DNA und Peptidhelices Licht absorbieren.

Die Einschränkungen sind auf das Fehlen geeigneter Quellen für gepulstes Licht und empfindlicher Detektionsverfahren zurückzuführen. Doch jetzt hat die Gruppe von Majed Chergui am Lausanner Centre for Ultrafast Science (EPFL) ein Setup entwickelt, das es ermöglicht, die chirale Reaktion von (Bio-)Molekülen mittels CD-Spektroskopie mit einer Auflösung von 0,5 Pikosekunden zu visualisieren.

Der Aufbau verwendet einen photoelastischen Modulator, ein optisches Gerät, das die Polarisation des Lichts steuern kann. In diesem System ermöglicht der Modulator das Shot-to-Shot-Polarisationsumschalten einer 20 kHz Femtosekunden-Pulsfolge im tiefen UV-Bereich (250-370 nm). Es ist dann möglich, Veränderungen in der Chiralität von Molekülen mit variablen Zeitverzögerungen zu erfassen, nachdem sie mit einem kurzen Laserpuls angeregt wurden.

"Aminosäurereste und DNA-Basen absorbieren Licht unter 300 nm", sagt Malte Oppermann, der erste Autor des Papiers. "Diese Anordnung ist die erste, die diese Region abdeckt, und wir haben sie erfolgreich an einem molekularen Modellsystem getestet. Unser nächstes Ziel ist es, zu größeren Biosystemen überzugehen, wie DNA-Oligomere."

Fakten, Hintergründe, Dossiers
  • Biomoleküle
  • Nukleobasen
  • Zirkulardichroismus
  • Zirkulardichroismus…
Mehr über Ecole Polytechnique Fédérale de Lausanne
  • News

    Auf dem Weg zur Nanotheranostik

    Die Theranostik ist ein aufstrebender Bereich der Medizin, dessen Name eine Kombination aus "Therapie" und "Diagnose" ist. Die Idee der Theranostik besteht darin, Medikamente und/oder Techniken zur gleichzeitigen - oder sequentiellen - Diagnose und Behandlung von Krankheiten zu kombinieren ... mehr

    Neue chemische Werkzeuge zur Modifikation und Untersuchung von Biomolekülen

    Das Verständnis der Struktur und des Stoffwechsels von Zellen und lebenden Organismen ist für die Entwicklung neuer Medikamente und Diagnostika unerlässlich. Die Verfügbarkeit chemischer Werkzeuge, die es Wissenschaftlern ermöglichen, Biomoleküle, wie Proteine, mit atomarer Auflösung zu bea ... mehr

    Sechs an einer Hand

    Menschen mit Polydaktylie besitzen von Geburt an mehr als die üblichen fünf Finger oder Zehen an Händen oder Füßen. Welche Bewegungsfertigkeiten besitzen Menschen mit Polydaktylie und wie sehen deren sensomotorische Hirnregionen aus? Das haben Wissenschaftler der Universität Freiburg, des I ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.