Meine Merkliste
my.bionity.com  
Login  

An der Methanquelle der Pflanzen

In Pflanzen entsteht das Treibhausgas aus der Aminosäure Methionin

27.06.2014

© Frederik Althoff

In einem geschlossenen Gefäß ziehen Forscher Tabakpflanzen und versetzen sie mit der Aminosäure Methionin. Diese ist dadurch markiert, dass ihre Methylgruppe einen hohen Anteil des schweren Kohlenstoff-Isotops 13-C enthält. An mehreren aufeinanderfolgenden Tagen nach Beginn des Experiments analysierten die Wissenschaftler die Luft aus dem Gefäß in einem Massenspektrometer und fanden darin Methan mit relativ viel schwerem Kohlenstoff.

© Susanne Benner

Viele Quellen eines Treibhausgases: Jahrzehntelang kannte die Wissenschaft nur Vulkane und Waldbrände als abiotische Methanquellen, in denen das Gas nicht auf biochemischem Weg entsteht. Als einzige biotische Quelle galten Mikroorganismen, die Methan unter Luftausschluss produzieren. In den vergangenen Jahren haben Frank Keppler und sein Team herausgefunden, dass Pflanzen, Pilze und auch Säugetiere ebenfalls Methan freisetzen, und zwar an der Luft. Ob dies biotisch, also durch Enzyme katalysiert, oder abiotisch und damit rein chemisch geschieht, untersuchen die Forscher derzeit. Jetzt haben sie festgestellt, dass der Kohlenwasserstoff in Pflanzen aus der Aminosäure Methionin entsteht.

Für das Treibhausgas Methan gibt es in der Natur mehr Quellen, als der Wissenschaft lange Zeit bekannt war. Pflanzen sind eine davon. Wie ein deutsch-britisches Team um Forscher des Max-Planck-Instituts für Chemie in Mainz und der Universität Heidelberg nun herausgefunden haben, entsteht Methan in Pflanzen aus der Aminosäure Methionin, die alle Lebewesen für den Aufbau von Proteinen brauchen. Die Wissenschaftler schlagen auch einen Mechanismus vor, wie sich Methan daraus auf abiotischem Weg, also ohne die Hilfe von Enzymen, in Pflanzenzellen bilden könnte. Dass Pflanzen das Gas freisetzen, hatten die Max-Planck-Forscher zwar schon im Jahr 2006 festgestellt. Bisher war aber unklar, wie der einfache Kohlenwasserstoff in ihnen entsteht. Wie die Forscher inzwischen beobachtet haben, entweicht Methan auch aus Pilzen. Bis vor wenigen Jahren war nur bekannt, dass das Gas natürlicherweise bei Vulkanausbrüchen, Waldbränden und von Mikroorganismen gebildet wird, die Stoffwechsel ohne Sauerstoff betreiben.

Die Spuren von Methan in der Atmosphäre sind klein, im Klima aber sind sie groß. Schließlich bewirkt es einen 25mal stärkeren Treibhauseffekt als Kohlendioxid. Wenn Frank Keppler mit seiner Arbeitsgruppe am Max-Planck-Institut für Chemie und der Ruprecht-Karls-Universität Heidelberg neue Methanquellen in der Natur aufspüren, ist das also auch für das Verständnis des Klimas relevant. Die Forscher haben aber nicht zuletzt ein Dogma der Biologie gekippt, seit sie vor wenigen Jahren entdeckten, dass Methan nicht nur von Mikroorganismen und vor allem auch in der Gegenwart von Sauerstoff gebildet wird.

Wie meistens jedoch, wenn ein findiger Forscher an einer jahrzehntelang gültigen Lehrmeinung rüttelt, machen sich manche Fachleute die neue Sicht nur schwer zu Eigen. Ein Argument der Skeptiker können die Mainzer Forscher nun aber entkräften. Sie haben mit der schwefelhaltigen Aminosäure Methionin nicht nur eine Substanz identifiziert, aus der das klimaschädliche Gas in Pflanzen entsteht. Sie liefern auch Hinweise, wie das geschehen könnte. „Dass wir das bisher nicht konnten, hatten uns manche Kritiker entgegengehalten“, sagt Frank Keppler.

Markiertes Methionin offenbart die pflanzliche Methanquelle

Um der pflanzlichen Methanquelle auf den Grund zu gehen, verfolgten Keppler und seine Kollegen zwei Wege. Zum einen infiltrierten sie die Blätter von Tabakpflanzen mit speziell markiertem Methionin und ließen die Schößlinge in weiteren Experimenten auf einem Nährmedium mit dem präparierten Methionin wachsen. Die Aminosäure enthielt in einer Methylgruppe, die für die Wissenschaftler als Vorläufer von Methan in Frage kam, besonders viel Kohlenstoff 13. Dieses schwere Kohlenstoffisotop lässt sich in geeigneten Analysen klar vom gewöhnlichen Kohlestoff 12 unterscheiden. „Das markierte Kohlenstoffatom fanden wir dann im Methan wieder, das die Pflanzen abgaben“, sagt Frank Keppler.

Zum anderen stellten die Forscher Versuche im Reagenzglas an, und zwar in einer wässrigen Lösung – ein durchaus realistisches Szenario, weil auch Pflanzenzellen größtenteils aus Wasser bestehen. In der Lösung brachten sie verschiedene methylierte Substanzen, die wie etwa Methionin, Dimethylsulfoxid oder Lecithin eine vom Methan abgeleitete Methylgruppe enthalten, mit Eisenionen, Ascorbinsäure und Wasserstoffperoxid zusammen. Letztere sind in Pflanzen, Pilzen und Tieren auch daran beteiligt, Methylgruppen in andere Moleküle einzubauen oder daraus zu entfernen. In den Experimenten entstand Methan aus Methionin und einigen anderen schwefelhaltigen Stoffen, die allerdings in Pflanzen nicht vorkommen,  – und zwar auf abiotischem Wege, also ohne das biochemische Zutun von Enzymen.

„Eine Voraussetzung ist dabei offenbar, dass die Methylgruppe mit einem Schwefelatom verknüpft ist“, sagt Frank Keppler. „Nur aus solchen die Stoffen bildete sich Methan in nennenswerten Mengen.“ So wurde der Kohlenwasserstoff auch aus Dimethylsulfoxid abgespalten. In Pflanzen spiele das keine Rolle, aber in Algen könne das ein wichtiger  Ausgangsstoff sein, aus dem Methan freigesetzt wird, so Keppler. „Diese Erkenntnis könnte helfen, das Methan-Ozean-Paradoxon zu erklären.“ Aus den Weltmeeren entweichen nämlich erkleckliche Mengen Methan, obwohl die Ozeane sauerstoffreich sind. Das konnten Biologen nicht erklären, solange sie davon ausgingen, dass Mikroorganismen nur Methan produzieren, wenn ihnen kein Sauerstoff zur Verfügung steht.

Methan als Zufall oder Abfall?

„Ob der abiotische Mechanismus, den wir im Reagenzglas beobachtet haben, in Pflanzen auch tatsächlich so abläuft, haben wir noch nicht bewiesen“, sagt Frank Keppler. „Das möchten wir aber in künftigen Arbeiten herausfinden.“ Indem sie Methionin als Ausgangsstoff des Treibhausgases ausmachten, haben sie dafür schon den ersten Schritt getan. Unklar ist bislang auch noch, ob Methan in Pflanzen zufällig entsteht, weil die dafür nötigen Stoffe in ihren Zellen nun gerade zusammentreffen. Oder ob es sich gewissermaßen um das Abfallprodukt einer Reaktion handelt, deren andere Produkte für den Stoffwechsel der Pflanzen wichtig sind.

Schon jetzt steht aber fest, dass es neben Methionin in Pflanzen weitere bis vor kurzem unbekannte Quellen des Treibhausgases gibt. In Pilzen etwa entsteht der Kohlenwasserstoff ebenfalls aus der schwefelhaltigen Aminosäure. Das haben Forscher um Frank Keppler erst kürzlich nachgewiesen. Zudem wird das Gas in Pflanzen auch auf anderen Wegen erzeugt. In früheren Arbeiten hatten die Forscher nämlich beobachtet, dass UV-Licht Methan aus pflanzlichem Pektin freisetzt. Dieser photochemische Mechanismus spielt bei der Zersetzung von totem Pflanzenmaterial eine wichtige Rolle, während der jetzt beobachtete Prozess in lebenden Pflanzen zum Tragen kommt.

In welchen Mengen Methan aus den Quellen entweicht, die Frank Keppler und seine Kollegen in Pflanzen, Pilzen und möglicherweise auch in Tieren gefunden haben, lässt sich noch nicht abschätzen. Mithin ist auch noch nicht klar, welche Rolle diese Methan-Emissionen hinsichtlich des Klimas spielen. Dazu werden die Forscher erst belastbare Hochrechnungen vorlegen können, wenn sie alle bis dato unbekannten Methanquellen gefunden und verstanden haben, wenn sie also auch wissen, welche Faktoren wie etwa die UV-Einstrahlung oder der Sauerstoffgehalt der Umgebung die Methan-Emission beeinflussen. Und genau daran arbeiten die Wissenschaftler um Frank Keppler.

Fakten, Hintergründe, Dossiers
  • Methan
  • Methionin
  • Pflanzen
  • Treibhausgase
  • Treibhauseffekt
  • Klimaforschung
Mehr über MPI für Chemie
  • News

    Wie viele vorzeitige Todesfälle gehen auf Luftverschmutzung zurück?

    (dpa) Schmutzige Luft dürfte einer Studie Mainzer Wissenschaftler zufolge deutlich mehr vorzeitige Todesfälle verursachen als bislang angenommen - auch in Deutschland. Nach neuen Rechnungen kommt ein Team um den Atmosphärenforscher Jos Lelieveld und den Kardiologen Thomas Münzel auf weltwei ... mehr

    Deutlich mehr Feinstaub-Tote als angenommen?

    (dpa) In Deutschland sollen Mainzer Forschern zufolge deutlich mehr Menschen an den Folgen von Feinstaub sterben als bislang angenommen. Laut einer Untersuchung des Max-Planck-Instituts (MPI) für Chemie kommen hierzulande rund 120.000 Menschen pro Jahr wegen Feinstaub vorzeitig ums Leben, w ... mehr

    «Open Science»: Forscher brechen aus dem Elfenbeinturm aus

    (dpa) Forschungsdaten und -ergebnisse werden frei verfügbar: Dieser Trend zur «Open Science» ist nach Einschätzung von Wissenschaftlern nicht mehr umzukehren. Der als «Open Access» bezeichnete kostenfreie Zugang zu Fachaufsätzen sei ein Kernelement von «Open Science» und werde im Lauf der n ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Lassen Kinder uns länger leben?

    Irgendwie scheint es zwischen der Lebenserwartung von Menschen und der Anzahl ihrer Kinder einen Zusammenhang zu geben: Wer ein Kind bekommt, lebt in der Regel länger als Kinderlose. Wer zwei Kinder hat, bekommt nochmal einen kleinen Lebensbonus dazu. Welche Gründe es für diesen Zusammenhan ... mehr

    Diagnostik für alle

    Mikroarrays sind moderne molekularbiologische Untersuchungssysteme, die die schnelle und parallele Diagnose von unterschiedlichen Krankheiten ermöglichen. Sie sind daher für die Erforschung neuer Impfstoffe unverzichtbar. Wie bei einem Computerchip sind hier viele Informationen auf kleinste ... mehr

    Höchstes Sterberisiko für Arme und Arbeitslose

    Wie beeinflussen sozioökonomische Faktoren das Sterberisiko von Arbeitnehmern in Deutschland? Um diese Frage zu beantworten, werteten Forscher des Max-Planck-Instituts für demografische Forschung einen Datensatz der Deutschen Rentenversicherung mit mehreren Millionen Versicherten aus und le ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.