15.08.2022 - University of Manchester

Enzym-Engineering soll helfen, das Plastikproblem der Erde zu lösen

Forscher des Manchester Institute of Biotechnology (MIB) haben eine neue Enzym-Engineering-Plattform entwickelt, um kunststoffabbauende Enzyme durch gezielte Evolution zu verbessern.

Zur Veranschaulichung des Nutzens ihrer Plattform haben sie ein Enzym entwickelt, das Poly(ethylen)terephthalat (PET), den in Plastikflaschen häufig verwendeten Kunststoff, erfolgreich abbauen kann.

In den letzten Jahren hat sich das enzymatische Recycling von Kunststoffen zu einer attraktiven und umweltfreundlichen Strategie entwickelt, um die mit Kunststoffabfällen verbundenen Probleme zu verringern. Zwar gibt es bereits eine Reihe von Methoden für das Recycling von Kunststoffen, doch Enzyme könnten eine kostengünstigere und energieeffizientere Alternative darstellen. Darüber hinaus könnten sie zum selektiven Abbau bestimmter Komponenten gemischter Kunststoffabfallströme eingesetzt werden, die mit den bestehenden Technologien nur schwer zu recyceln sind.

Obwohl die Technologie vielversprechend ist, gibt es erhebliche Hürden, die überwunden werden müssen, damit enzymatisches Kunststoffrecycling auf breiter Basis im kommerziellen Maßstab eingesetzt werden kann. Eine Herausforderung besteht beispielsweise darin, dass natürliche Enzyme, die Kunststoffe abbauen können, in der Regel weniger effektiv sind und unter den für einen großtechnischen Prozess erforderlichen Bedingungen instabil sind.

Um diese Einschränkungen zu überwinden, haben Forscher der University of Manchester in der Zeitschrift Nature Catalysis eine neue Enzym-Engineering-Plattform vorgestellt, mit der die Eigenschaften kunststoffabbauender Enzyme schnell verbessert werden können, um sie für das Kunststoffrecycling in großem Maßstab besser geeignet zu machen. Ihre integrierte und automatisierte Plattform kann die Fähigkeit zum Kunststoffabbau von rund 1000 Enzymvarianten pro Tag erfolgreich bewerten.

Dr. Elizabeth Bell, die die experimentellen Arbeiten am MIB leitete, sagt über die Plattform: "Die Anhäufung von Plastik in der Umwelt ist eine große globale Herausforderung. Aus diesem Grund wollten wir unsere Möglichkeiten der Enzymevolution nutzen, um die Eigenschaften der kunststoffabbauenden Enzyme zu verbessern und so zur Linderung einiger dieser Probleme beizutragen. Wir hoffen, dass unsere skalierbare Plattform es uns in Zukunft ermöglichen wird, schnell neue und spezifische Enzyme zu entwickeln, die für den Einsatz in groß angelegten Kunststoffrecyclingprozessen geeignet sind."

Um ihre Plattform zu testen, entwickelten sie ein neues Enzym, HotPETase, durch die gezielte Evolution von IsPETase. IsPETase ist ein kürzlich entdecktes Enzym, das von dem Bakterium Ideonella sakaiensis produziert wird und PET als Kohlenstoff- und Energiequelle nutzen kann.

IsPETase besitzt zwar die natürliche Fähigkeit, einige teilkristalline Formen von PET abzubauen, doch ist das Enzym bei Temperaturen über 40 °C, also weit unter den gewünschten Prozessbedingungen, instabil. Diese geringe Stabilität bedeutet, dass die Reaktionen bei Temperaturen unterhalb der Glasübergangstemperatur von PET (~65°C) durchgeführt werden müssen, was zu niedrigen Depolymerisationsraten führt.

Um dieser Einschränkung zu begegnen, entwickelte das Team ein thermostabiles Enzym, HotPETase, das bei 70 °C aktiv ist, also oberhalb der Glasübergangstemperatur von PET. Dieses Enzym kann teilkristallines PET schneller depolymerisieren als bisher bekannte Enzyme und kann die PET-Komponente eines laminierten Verpackungsmaterials selektiv abbauen, was die Selektivität verdeutlicht, die durch enzymatisches Recycling erreicht werden kann.

Professor Anthony Green, Dozent für organische Chemie, sagte: "Die Entwicklung von HotPETase veranschaulicht sehr schön die Möglichkeiten unserer Enzym-Engineering-Plattform. Wir freuen uns nun auf die Zusammenarbeit mit Verfahrenstechnikern und Polymerwissenschaftlern, um unser Enzym in realen Anwendungen zu testen. Wir sind zuversichtlich, dass sich unsere Plattform in Zukunft als nützlich erweisen wird, um effizientere, stabilere und selektivere Enzyme für das Recycling einer breiten Palette von Kunststoffen zu entwickeln."

Die Entwicklung robuster kunststoffabbauender Enzyme wie HotPETase und die Verfügbarkeit einer vielseitigen Enzym-Engineering-Plattform leisten einen wichtigen Beitrag zur Entwicklung einer biotechnologischen Lösung für das Problem der Kunststoffabfälle. Um diese vielversprechende Technologie voranzubringen, bedarf es nun einer gemeinschaftlichen und multidisziplinären Anstrengung, an der Biotechnologen, Verfahrensingenieure und Polymerwissenschaftler aus dem gesamten akademischen und industriellen Umfeld beteiligt sind. Da die Welt mit einem immer größer werdenden Abfallproblem konfrontiert ist, könnte die Biotechnologie eine ökologisch nachhaltige Lösung bieten.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
  • Enzyme
  • Kunststoffe
  • Polyethylenterephthalate
  • Recycling
Mehr über University of Manchester
  • News

    Neue Antibiotika durch Genmanipulation

    Wissenschaftler haben einen neuen Weg zur Herstellung komplexer Antibiotika entdeckt, bei dem das Gen-Editing genutzt wird, um die Wege für künftige Medikamente umzuprogrammieren, die zur Bekämpfung der Antibiotikaresistenz, zur Behandlung vernachlässigter Krankheiten und zur Verhinderung k ... mehr

    Einzigartige neue antivirale Behandlung mit Zucker

    Neue antivirale Materialien aus Zucker wurden entwickelt, um Viren bei Kontakt zu zerstören, und könnten bei der Bekämpfung von Virenausbrüchen helfen. Diese neue Entwicklung eines internationalen Wissenschaftlerteams ist vielversprechend für die Behandlung von Herpes simplex (Fieberbläsche ... mehr

    Biotech-Durchbruch verwandelt Abfallbiomasse in hochwertige Chemikalien

    Ein Schritt in Richtung einer nachhaltigeren biobasierten Wirtschaft wurde von Forschern, die in der Lage waren, einen Prozess zur Umwandlung von Abfallstoffen in hochwertige Chemikalien zu vereinfachen, mit neuen Impulsen versehen. Eine Kooperation zwischen dem Vereinigten Königreich und B ... mehr