08.07.2022 - International society for optics and photonics (SPIE)

STED-Mikroskopie im Frequenzbereich zur selektiven Unterdrückung von Hintergrundrauschen

Neuartige Methode zur selektiven und effektiven Unterdrückung des Hintergrundrauschens in der STED-Mikroskopie, die sich auch in andere Zweistrahl-Punktabtastverfahren integrieren lässt

Nanoskopie beschreibt die Fähigkeit, über die allgemein akzeptierte optische Grenze von 200-300 nm hinaus zu sehen. Die STED-Mikroskopie (Stimulated Emission Depletion), die 1994 von Stefan W. Hell und Jan Wichmann entwickelt und 1999 von Hell und Thomas Klar experimentell demonstriert wurde, ist eine Superresolutionstechnik für die Nanoskopie. Die STED-Mikroskopie hat beträchtliche Fortschritte gemacht und wird in der praktischen Forschung häufig eingesetzt. Ihr praktischer Einsatz ist jedoch mit einem gewissen unerwünschten Hintergrundrauschen verbunden, das sich negativ auf die räumliche Auflösung und die Bildqualität auswirkt. Im Allgemeinen stammt dieses Rauschen von zwei Signalquellen: (i) Fluoreszenz, die durch Wiederanregung aufgrund ultrahoher Lichtdosen des Verarmungsstrahls entsteht, und (ii) Restfluoreszenz, die auf eine unzureichende Verarmung des Inhibitionsstrahls zurückzuführen ist.

In den letzten Jahrzehnten wurden bedeutende Ansätze zur Entfernung des Hintergrunds entwickelt. Diese lassen sich in drei Kategorien einteilen: Zeit-, Raum- und Phasordomäne. Einige dieser Methoden sind seit langem bekannt, andere wurden erst kürzlich entwickelt. Sie sind zwar leistungsfähige Methoden zur Entfernung unerwünschter Störungen aus STED-Mikroskopie-Bildern, haben aber alle ihre Nachteile, wie z. B. Bildverzerrungen, verlängerte Aufnahmezeiten oder das Auftreten von Schrotrauschen. Die STED-Mikroskopie hat ihr volles Potenzial noch nicht erreicht.

Wie in der Fachzeitschrift Advanced Photonics berichtet, haben Forscher der Universität Zhejiang vor kurzem eine neuartige Methode namens "dual-modulation difference" STED (dmdSTED) entwickelt, mit der Hintergründe selektiv und effektiv unterdrückt werden können. Die Methode funktioniert, indem sie Signale aus dem Raumbereich in den Frequenzbereich sortiert, so dass die nicht abgereicherte Fluoreszenz und der STED-induzierte Hintergrund bequem von den gewünschten Fluoreszenzsignalen getrennt werden. Der Anregungs- und der Verarmungsstrahl werden jeweils mit unterschiedlichen Modulationen im Zeitbereich geladen. Da die durch den Verarmungsstrahl verursachte Wiederanregung vermieden wird, kann ein Verarmungslaser mit einer Wellenlänge gewählt werden, die näher am Peak des Fluoreszenzemissionsspektrums der Probe liegt, wodurch die erforderliche Verarmungsintensität verringert wird.

Die derzeitige Version von dmdSTED arbeitet mit einer räumlichen Auflösung von λ/8, einer höheren Auflösung als die der Phasor-Domain-Methoden (z. B. SPLIT, λ/5), die anfällig für Schrotrauschen sind. Theoretisch kann mit diesem Ansatz ein potenzieller Signalverlust durch Zeitbereichsverfahren (wie Time-Gating) vermieden werden. Darüber hinaus ist dmdSTED sowohl mit gepulsten als auch mit kontinuierlichen Wellen kompatibel, und es wird keine Hardware für zeitkorrelierte Einzelphotonenzählung (TCSPC) benötigt. Im Vergleich zu Raumzeitmethoden ist die Zeitauflösung von dmdSTED nicht eingeschränkt. Daher ist dmdSTED vorteilhaft bei der Erfassung umfassender feiner Mikroskopiebilder in Bezug auf räumliche Auflösung, SNR und Zeitauflösung.

Laut dem Hauptautor Xu Liu, Direktor des State Key Laboratory of Modern Optical Instrumentation, "besitzt diese Frequenzbereichsmethode ein großes Potenzial für die Integration in andere Zweistrahl-Punktabtastverfahren, wie die Sättigungsmikroskopie im angeregten Zustand (ESSat), die Verarmungsmikroskopie im Ladungszustand (CSD), die Verarmungsmikroskopie im Grundzustand (GSD) und so weiter." Liu merkt an: "Darüber hinaus können mehr Arten von Proben mit anderen spektralen Eigenschaften als die üblicherweise bei STED verwendeten Fluoreszenzfarbstoffe verwendet werden, wie z. B. einige Quantenpunkte mit einem breiteren Anregungsspektrum."

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
Mehr über International society for optics and photonics (SPIE)
Mehr über Zhejiang University
  • News

    Sorge wegen Resistenzen: Antibiotika in China leicht zu bekommen

    (dpa) Antibiotika sind in chinesischen Apotheken vielfach noch immer ohne ärztliche Verschreibung erhältlich, obwohl die Regierung eigentlich ihren Missbrauch eindämmen will. Nach einer im Fachjournal «Antimicrobial Resistance and Infection Control» vorgestellten Erhebung konnten Antibiotik ... mehr

    Vogelgrippe-Virus mit Eierschale

    Die Vogelgrippe kann von Vögeln auf Menschen übertragen werden; eine Übertragung unter Menschen ist dagegen selten. Ursache könnte eine Eierschalen-artige Mineralschicht sein, die die Viren aufgrund der hohen Calcium-Konzentration im Darm von Vögeln bekommen. Wie chinesische Wissenschaftler ... mehr

    Hefen mit Eierschale

    Die Eierschalen der Natur inspirierten chinesische Forscher: Einem Team um Ruikang Tang von der Zhejiang University ist es gelungen, lebende Hefezellen mit einem künstlichen Mineralüberzug zu versehen. Wie in der Zeitschrift Angewandte Chemie berichtet, schützen die harten anorganischen Sch ... mehr