20.05.2020 - Max-Planck-Institut für Dynamik und Selbstorganisation

Wenn Proteine gemeinsam agieren, aber alleine reisen

Wenn ein Protein seine Funktion nur innerhalb eines Proteinkomplexes erfüllen kann, was ist dann der Vorteil dessen Auseinandergehens?

Proteine, die mikroskopisch kleinen "Arbeitspferde", die alle lebenswichtigen Funktionen erfüllen, sind Teamplayer: Um ihre Aufgabe zu meistern, müssen sie sich oft zu präzisen Strukturen, so genannten Proteinkomplexen, zusammenfügen. Diese Komplexe können jedoch dynamisch und kurzlebig sein, wobei Proteine zusammenkommen, sich aber bald darauf wieder trennen.

In einer neuen Arbeit, die in PNAS veröffentlicht wurde, zeigen Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation, der Universität Oxford und der Sorbonne Université, wie die Wirkung des Auf- und Abbaus von Proteinkomplexen an einem "Sweet Spot" die Proteinfunktion begünstigen kann.

Wenn ein Protein seine Funktion nur innerhalb eines Proteinkomplexes erfüllen kann, was ist dann der Vorteil dessen Auseinandergehens? Dies ist die Schlüsselfrage, die Jaime Agudo-Canalejo, Pierre Illien und Ramin Golestanian in dieser Studie untersucht haben. Die Forscher haben festgestellt, dass Proteine, um ihre Funktion erfüllen zu können, zuerst durch stochastische Bewegung ihr Ziel finden müssen. Im Falle eines Enzyms, zum Beispiel, das die chemische Umwandlung eines Substratmoleküls in ein Produktmolekül katalysiert, muss das Enzym zuvor das Substrat finden. „Die grundlegende Beobachtung zeigt, dass die einzelnen Proteine, die einen Komplex bilden, sich allein schneller bewegen können, als in einem sperrigen Verbund. Daher kann die Zeit, bis sie ihr Ziel erreichen, kürzer sein, wenn sie unabhängig sind. Ihre Funktion können sie jedoch nur dann erfüllen, wenn die Proteine, sobald sie sich in der Nähe des Ziels befinden, den benötigten Komplex wieder schnell genug bilden“, sagt Ramin Golestanian, Direktor der Abteilung Physik lebender Materie am MPIDS.

Proteinkomplexe folgen dem Prinzip des gesunden Mittelmaßes

Um die Wechselwirkung zwischen diesen beiden Effekten zu verstehen, haben die Forscher ein mathematisches Modell entwickelt, das die Diffusion der Proteine, den Auf- und Abbau von Proteinkomplexen sowie die Reaktion mit den Zielmolekülen berücksichtigt. Überraschenderweise fanden sie heraus, dass ein „Sweet Spot“ in der Proteinkonzentration existiert. "Wenn es zu wenige Proteine gibt, befinden sie sich größtenteils im dissoziierten Zustand und sind somit schnell, aber nicht funktionsfähig. Gibt es zu viele Proteine, bilden die meisten von ihnen Proteinkomplexe und sind daher funktionsfähig, aber langsam. Bei mittleren Konzentrationen im „Sweet Spot“ bauen sich Proteinkomplexe hingegen oft genug ab, um eine schnelle Bewegung zu ermöglichen, formen sich aber oft genug wieder, um funktionsfähig zu sein", erklärt Jaime Agudo-Canalejo, der Erstautor der Studie. "Die Proteinmenge muss "gerade richtig" sein, eben ein gesundes Mittelmaß", fügt er hinzu.

Dynamisch sein, aber auf der sicheren Seite bleiben

Die Bedingungen im Zellinneren sind alles andere als homogen und bestimmte Moleküle können zu einem gegebenen Zeitpunkt in verschiedenen Bereichen der Zelle mehr oder weniger reichlich vorhanden sein. Insbesondere Inhibitormoleküle, die den Abbau von Proteinkomplexen fördern, können sich in einer bestimmten Region konzentrieren. Wie ist in einer solchen Situation die erwartete Verteilung von Proteinkomplexen innerhalb der Zelle? Mit Hilfe ihres mathematischen Modells haben die Forscher herausgefunden, dass die Proteine dazu neigen, sich spontan in den Regionen anzusammeln, in denen ihre Komplexform am stabilsten ist. Dieses eindeutig aus dem Nichtgleichgewichtszustand resultierende Phänomen, haben sie als "Stabilitaxis" bezeichnet. Golestanian argumentiert: „Stabilitaxis könnte ein generischer Mechanismus sein, den Zellen nutzen, um als Reaktion auf Gradienten in der Konzentration eines anderen Moleküls, räumliche Muster in der Verteilung von Proteinen zu erzeugen.“ Agudo-Canalejo ergänzt: „Der gleiche Mechanismus könnte bei der Entwicklung von synthetischen Materialien, die auf externe Stimuli reagieren, genutzt werden, zum Beispiel durch Verwendung von Kolloiden, die mit lichtaktivierten Linkern beschichtet sind." Dieses erachten die Autoren als einen besonders spannenden Aspekt dieser Forschungsarbeit: sie ermöglicht es ihnen, sowohl komplizierte Mechanismen bei der Selbstorganisation in biologischen Systemen aufzudecken, als auch Strategien für technische Anwendungen anzubieten.

Fakten, Hintergründe, Dossiers
Mehr über MPI für Dynamik und Selbstorganisation
Mehr über Max-Planck-Gesellschaft
  • News

    Zelluläres Kraftwerk recycelt Industrie-Abgase

    Kohlenmonoxid ist ein hochgiftiges Gas. Menschen sterben innerhalb weniger Minuten, wenn sie es einatmen. Trotzdem gibt es Bakterien, die Kohlenmonoxid nicht nur widerstehen können, sie verwenden es sogar zum Atmen und zur Vermehrung. Erkenntnisse darüber, wie diese Bakterien überleben, öff ... mehr

    "Coole" Bakterien

    Aufgrund der milden Winter produzieren Skigebiete Kunstschnee, um den natürlichen Schneefall zu ergänzen oder die Skisaison zu verlängern. Sogenannte „Eisnukelations-Proteine“, die aus dem Bakterium Pseudomonas syringae extrahiert werden, können Wasser besser gefrieren lassen als jedes ande ... mehr

    Covid-19-Ansteckungsrisiko selbst berechnen

    Auch wenn sich die Fachwelt noch nicht ganz einig ist, gehen viele Experten davon aus, dass Aerosolpartikel bei der Übertragung von Sars-CoV-2-Viren eine wichtige Rolle spielen. Aerosole entstehen beim Atmen, Husten oder Niesen, aber auch beim Reden und Singen. Anders als Tröpfchen fallen s ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr