Meine Merkliste
my.bionity.com  
Login  

Gentherapie: Neue Transporter für DNA entwickelt

19.11.2019

Wissenschaftler am Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg (MLU) haben neue Transport-Vehikel für zukünftige Gentherapien entwickelt. Die Forscher um Dr. Christian Wölk nutzen synthetische Fette, um DNA in die Zellen zu schleusen. Wie gut das funktioniert, zeigen die Wissenschaftler zusammen mit Pharmazeuten der Universität Marburg in einer in "Biomaterials Science" veröffentlichten Studie.

Gentherapie ist für Menschen mit Krankheiten, die durch Gendefekte verursacht sind, die einzige Hoffnung auf Heilung. Ein defektes Gen wird in einer solchen Therapie durch ein gesundes ersetzt und so die Ursachen der Krankheit beseitigt, so die Theorie. Angeborene Immunschwächen, angeborene Blindheit oder Sichelzellanämie wären so behandelbar, aber auch Krebszellen könnten durch genetische Modifikationen unschädlich gemacht werden. In der Praxis musste die Therapie-Methode viele Rückschläge hinnehmen, momentan sind in Europa nur sechs Gentherapeutika zugelassen.

Neben der Herstellung der benötigten Gen-Abschnitte ist eine der größten Hürden, die DNA in die Zelle und an ihre Bestimmungsstelle im Körper zu schleusen. Die wenigen bisher zugelassenen Gentherapeutika verwenden dafür modifizierte Viren. Diese infizieren die Zelle und bringen so DNA ein. Doch diese Methode birgt Risiken, da die Viren eine heftige Immunreaktion hervorrufen können. Die Herstellung ist zudem sehr kostenintensiv und aufwändig.

Die Arbeitsgruppe von Dr. Christian Wölk unter Leitung von Prof. Dr. Andreas Langner am Institut für Pharmazie der MLU forscht daher an einem neuen System, um DNA in Körperzellen zu schleusen. "Nicht-virale Systeme sind sehr attraktiv, weil sie einfach herzustellen sind", sagt Wölk. Der einzige Nachteil ist, dass ihre Wirkung mit der Zeit nachlässt und sie erneut verabreicht werden müssen. Seine Arbeitsgruppe nutzt Liposomen, eine Art Fettbläschen, welche bereits als Träger für verschiedene Arzneimittel verwendet werden. Mit Nukleinsäuren der DNA bilden sie sogenannte Lipoplexe, die mit der Zellmembran verschmelzen und so ihren Inhalt in die Zelle freilassen.

Die Pharmazeuten in Halle haben vier künstliche Fette (Lipide) entwickelt, die für den DNA-Transport in Frage kommen. Eines, das Lipid DiTT4, geht nun in die nächste Runde der präklinischen Testphasen. Sind diese erfolgreich, folgen klinische Studien am Menschen. "Die jüngsten Arbeiten waren sehr vielversprechend", sagt Wölk. Das Lipid schafft es, Nukleinsäuren zu verkapseln, vor dem Abbau durch Enzyme zu schützen und sehr effizient in Zellen einzuschleusen. Wichtig sei auch, dass kein Co-Lipid benötigt werde, so Diplom-Pharmazeutin Julia Giselbrecht: "Dieser Vorteil ermöglicht eine einfache, reproduzierbare Herstellung, die für spätere Anwendungen in der Praxis notwendig ist." Giselbrecht ist zusammen mit Dr. Shashank R. Pinnapireddy von der Universität Marburg Erstautorin der nun in Biomaterials Science veröffentlichten Studie.

Ein paar Herausforderungen gibt es bis dahin allerdings noch. Für zielgenaue Therapien muss beispielsweise geklärt werden, in welche Zellen DiTT4 seine Ladung abgibt, wenn es direkt in den Körper injiziert wird. Bereits zugelassene Therapien modifizieren die Zellen meist außerhalb des Körpers und spritzen dann die genetisch veränderten Zellen. Die gute Verträglichkeit von DiTT4 mit Blutkomponenten würde jedoch eine systemische Anwendung erlauben, so Giselbrecht.

Wölk zeigt sich daher zuversichtlich, dass die in Halle entwickelten Lipide in Zukunft für Gentherapien verwendet werden. "Wir sind von dem System überzeugt", so Wölk. Neben der Philipps-Universität Marburg ist auch die Universität Leiden in das Forschungsprojekt eingestiegen. Wölk wird die Forschung zu dem Thema außerdem an der Universität Leipzig aufbauen.

Originalveröffentlichung:

Pinnapireddy et al.; "A triple chain polycationic peptide-mimicking amphiphile - Efficient DNA-transfer without co-lipids"; Biomaterials Science; 2019

Fakten, Hintergründe, Dossiers
Mehr über MLU
  • News

    Neuer Antibiotika-Wirkstoff wirkt auch bei resistenten Bakterien

    Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) haben eine neue, vielversprechende Klasse von Wirkstoffen gegen resistente Bakterien entwickelt. In ersten Tests in Zellkulturen und bei Insekten waren die Substanzen mindestens genau so effektiv wie gängige Antibiotika. Die neue ... mehr

    Forscher entwickeln neuartigen Impfbaukasten für Pflanzen

    Einfach, schnell und flexibel: Künftig könnten Pflanzen deutlich leichter gegen Viren geimpft werden. Ein neues Verfahren dafür haben Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU), des Leibniz-Instituts für Pflanzenbiochemie (IPB) und des Nationalen Forschungsrats in Italien ... mehr

    Immunsystem von Pflanzen: Es funktioniert anders als gedacht

    Was passiert in Pflanzen auf molekularer Ebene, wenn sie sich gegen Schädlinge zur Wehr setzen? Bisher ging man davon aus, dass dabei in allen Pflanzen in etwa die gleichen Prozesse ablaufen. Das stimmt nicht, wie ein Team von Biologen der Martin-Luther-Universität Halle-Wittenberg (MLU) in ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.