25.02.2019 - Karlsruher Institut für Technologie (KIT)

Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Exzellenzcluster „3D Matter Made to Order“ erforscht dreidimensional gedruckte Designer-Strukturen

Mit additiven Verfahren wie dem 3D-Druck lässt sich inzwischen nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt Martin Wegener, Professor am Institut für Angewandte Physik und Direktor am Institut für Nanotechnologie des KIT sowie Sprecher des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O). Gefragt seien vor allem Technologien und Verfahren, die auf der Basis digitaler Konstruktionsdaten bereits kleinste Strukturen schnell und qualitativ hochwertig umsetzen können. „Hier setzen wir mit unserem Cluster an. Wir wollen die 3D-Fertigung und Materialverarbeitung vom Molekül bis zur Makrostruktur vollständig digitalisieren und neue Fertigungstechnologien für konkrete Anwendungsfelder entwickeln.“

„Ohne neuartige Tinten und Photolacke aus der Chemie heraus wird dies nicht gehen. Anwendungen in der Biologie erfordern beispielsweise Materialien, die gleichsam auf Knopfdruck wieder abbaubar sind unter physiologischen Bedingungen, wie auch elektrisch leitfähige Materialien, die in 3D mit Nanometerpräzision verdruckbar sind“, sagt Uwe Bunz, Professor für Organische Chemie an der Universität Heidelberg, Mitglied des dortigen Centre for Advanced Materials und Sprecher von 3DMM2O.

Neue Ansätze für den digitalen 3D-Druck

Feiner, schneller und vielfältiger sollen sie sein: die additiven Prozesse und Technologien, die Anwendungen in den Bereichen Materialien und Lebenswissenschaften ermöglichen. Hierfür setzen die Forscher aus Natur- und Ingenieurwissenschaften in drei ineinandergreifenden Forschungsfeldern an: Im Feld „Technologien“ entstehen neuartige Werkzeuge, die Strukturen bis zu zehn Nanometern fertigen können. Sie ermöglichen einen schnelleren, präziseren Druck mit unterschiedlichen Tinten und Photolacken. Diese entwickeln die Wissenschaftler im Feld „Molekulare Materialien”. Die maßgeschneiderten künstlichen Materialien weisen ein breites Spektrum an Eigenschaften auf und lassen sich kombinieren. Die Forschung in die Anwendung bringt das Feld „Applikationen“. Hier liegt der Fokus auf den Bereichen Optik und Photonik, Materialwissenschaften sowie Lebenswissenschaften. Die gedruckten 3D-Strukturen können beispielsweise die Leistung optischer Chips für die Informationsverarbeitung verbessern oder in künstlichen Retinae zum Einsatz kommen.

„Unser Ansatz besteht darin, digitale Informationen in maßgeschneiderte, funktionale Materialien, Geräte und Systeme zu übersetzen“, so Wegener. Langfristiges Ziel von 3DMM2O sei es, eine Art Tischgerät zu bauen, das keine besonderen räumlichen Voraussetzungen erfordert, wie eine große Produktionshalle, Vakuum oder bestimmte Temperaturen. „Wir wollen bisher unzugängliche wissenschaftliche Anwendungen quasi für zu Hause erschließen und den 3D-Druck auf Knopfdruck ermöglichen“, sagt Wegener.

3DMM2O konnte sich 2018 in der Förderlinie „Exzellenzcluster“ der Deutschen Forschungsgemeinschaft (DFG) durchsetzen. Insgesamt stehen für diese Förderlinie jährlich rund 385 Millionen Euro zur Verfügung. Die Carl-Zeiss-Stiftung fördert das Cluster zusätzlich über sechs Jahre hinweg mit acht Millionen Euro. Diese Mittel fließen in ein Doktoranden-Stipendienprogramm, eine neue Professur am CAM, ein neues Nutzerlabor am KIT und in eine begleitende „Vision Assessment“-Studie, welche die gesellschaftlichen und ethischen Implikationen der Visionen von 3DMM2O erforschen soll.

HEiKA Graduiertenschule „Functional Materials“

Ein zentrales Strukturelement des Clusters ist die HEiKA Graduiertenschule "Functional Materials". HEiKA steht für die Heidelberg Karlsruhe Strategic Partnership, die alle gemeinsamen bilateralen Aktivitäten des KIT und der Universität Heidelberg umfasst. Die Graduiertenschule bindet Masterstudierende und Doktoranden in das stark interdisziplinäre Forschungsgebiet ein. Hierbei spielt ein breites Modulprogramm eine wichtige Rolle. Die Carl-Zeiss-Stiftung fördert jährlich bis zu vier Masterstudierende, die eine Promotion im Forschungsumfeld von 3DMM2O anstreben. Zusätzlich unterstützt die Stiftung bis zu 20 Doktoranden bei ihrer Dissertation in den Themenbereichen des Clusters.

Maßgeschneiderter Materialmix und bewegliche Mikrostrukturen: Beispiele aus der Forschung im Cluster 3DMM2O

Forscher des KIT und der Carl Zeiss AG haben gemeinsam ein System entwickelt, mit dem sie mehrfarbig fluoreszierende Sicherheitsmerkmale dreidimensional additiv herstellen können. Damit lassen sich beispielsweise Geldscheine, Pässe und Markenprodukte vor Fälschung schützen. Grundlage ist die 3D-Laserlithografie, bei der ein Laserstrahl computergesteuert einen flüssigen Fotolack durchfährt und das Material nur am Fokuspunkt des Laserstrahls aushärtet. Die Wissenschaftler haben eine selbst entwickelte mikrofluidische Kammer in das Lithografiegerät eingebaut, mit der sie verschiedenste Materialien verdrucken können. So kann ein einziges Gerät dreidimensionale Mikro- und Nanostrukturen aus mehreren Materialien in einem Prozessschritt umsetzen.

Das direkte Laserschreiben ermöglicht bereits jetzt routinemäßig präzise Strukturen auf der Mikroskala. Für Anwendungen in der Biomedizin wäre es jedoch vorteilhaft, wenn die gedruckten Objekte nicht starr sind, sondern bewegliche Systeme wären, die nach dem 3D-Druck schaltbar sind. Forscher des KIT konnten nun dreidimensionale Strukturen aus Hydrogelen erstellen, die durch den Einfluss von Temperatur oder Licht ihre Form stark verändern. Diese sind in wässriger Umgebung funktionsfähig und damit ideal für Anwendungen in Biologie und Biomedizin.

Fakten, Hintergründe, Dossiers
  • 3D-Druck
  • 3D-Drucktechnik
  • Digitaldruck
  • Tinten
  • Materialwissenschaften
  • funktionale Materialien
Mehr über KIT
  • News

    Mit höchster Auflösung: RNA-Bildgebung in lebenden Zellen

    Ribonukleinsäure – kurz RNA – ist maßgeblich an grundlegenden biologischen Prozessen beteiligt. Sie transportiert genetische Informationen, setzt diese in Proteine um oder trägt zur Genregulation bei. Um zu verstehen, welche Funktionen sie im Detail erfüllt, haben Forscher der Universität H ... mehr

    Aerobuster jagt herumfliegende Corona-Viren

    Aerosole spielen eine wichtige Rolle bei der Verbreitung von Covid 19. Beim Atmen, Sprechen oder Husten verbreiten sich die winzigen mit Corona-Viren beladenen Tröpfchen in Innenräumen. Besonders betroffen sind Einrichtungen wie Schulen, Kindergärten, Uni-Hörsäle, Arztpraxen oder Restaurant ... mehr

    Streckbank für Zellen

    Das Verhalten von Zellen wird durch ihre Umgebung gesteuert. Neben biologischen Faktoren und chemischen Substanzen geraten auch physikalische Kräfte wie Druck oder Zug in den Fokus. Eine Methode, mit der sich der Einfluss äußerer Kräfte auf einzelne Zellen analysieren lässt, haben Forscher ... mehr

  • Forschungsinstitute

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

Mehr über Ruprecht-Karls-Universität Heidelberg