Meine Merkliste
my.bionity.com  
Login  

Mit Platin-Nanopartikeln selektiv gegen Leberkrebszellen vorgehen

15.02.2019

ETH Zürich / Helma Wennemers

Nanopartikel aus nicht-oxidiertem Platin sind für gewöhnliche Körperzellen (links unten) nahezu ungiftig. Im Innern von Leberkrebszellen (rechts oben) wird das Platin jedoch oxidiert, wodurch es seine Toxizität entfaltet.

Obschon in den letzten Jahren immer mehr zielgerichtet wirkende molekularbiologische Krebsmedikamente entwickelt wurden, spielen klassische Chemotherapeutika in der Krebsbehandlung immer noch eine wichtige Rolle. Zu den letzteren gehören Platin-Zytostatika. Das sind Zellgifte, die auf Platin beruhen und die Krebszellen angreifen. Allerdings schädigen sie auch gesundes Gewebe, was teils heftige Nebenwirkungen verursacht. Forscher der ETH Zürich haben nun einen Ansatz gefunden, wie solche Arzneistoffe selektiver für Krebszellen gemacht werden können.

Als Zellgift wirkt Platin in seiner oxidierten Form, Platin(II). Dieses ist auch in den bestehenden klassischen Platin-Zytostatika enthalten. Die nicht-oxidierte Form Platin(0) ist für Zellen weitaus weniger giftig. Die Wissenschaftler um Helma Wennemers, Professorin am Laboratorium für Organische Chemie, und Michal Shoshan, Postdoktorandin in ihrer Gruppe, suchten daher nach einem Weg, Platin(0) in die Zellen zu bringen und es erst dort zum wirksamen Platin(II) oxidieren zu lassen. Dafür nutzten sie Platin(0)-Nanopartikel, wobei sie diese zunächst mit einem Peptid stabilisieren mussten. In einem Screening einer Bibliothek mit Tausenden Peptiden identifizierten sie ein geeignetes Peptid, welches die Herstellung von kleinen Platin-Nanopartikeln (Durchmesser von 2,5 Nanometer) ermöglicht, die über Jahre stabil bleiben.

Im Zellinnern oxidiert

Versuche mit Krebszellkulturen zeigten, dass diese Platin-Nanopartikel tatsächlich in die Zellen gelangen und dass das Platin(0) vom spezifischen Milieu im Innern von Leberkrebszellen zum zytotoxisch wirkenden Platin(II) oxidiert wird.

Untersuchungen mit zehn verschiedenen menschlichen Zelltypen zeigten ausserdem, dass die Toxizität der Nanopartikel sehr selektiv in Leberkrebszellen auftritt. Dort wirken die Nanopartikel genauso toxisch wie Sorafenib, das derzeit am häufigsten eingesetzte Medikament bei der Behandlung primärer Lebertumore. Allerdings sind die Nanopartikel selektiver als Sorafenib sowie deutlich selektiver als das bekannte Cisplatin. Es ist daher denkbar, dass die Nanopartikel weniger Nebenwirkungen haben werden.

In Zusammenarbeit mit der Forschungsgruppe von ETH-Professor Detlef Günther konnten die Forscher mittels spezieller Massenspektrometrie den Gehalt von Platin in den Zellen und deren Zellkernen bestimmen. Es zeigte sich, dass der Gehalt an Platin in den Zellkernen der Leberkrebszellen deutlich höher war als beispielsweise in Darmkrebszellen. Die Autorinnen vermuten, dass die durch Oxidation in Leberkrebszellen erzeugten Platin(II)-Ionen in den Zellkern gelangen und dort ihre Toxizität entfalten.

«Es noch ein sehr weiter und ungewisser Weg zu einem Medikament, doch es ist ein neuer Ansatz, die Selektivität von Arzneistoffen für bestimmte Krebsarten zu verbessern – durch einen selektiven Aktivierungsprozess, der spezifisch für einen Zelltyp ist», sagt Wennemers. Weitere Forschungen sollen nun die chemischen Eigenschaften von solchen Nanopartikeln erweitern, um deren biologische Effekte noch genauer kontrollieren zu können.

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Wie mehrzellige Cyanobakterien Moleküle transportieren

    Forscher der ETH Zürich und der Universität Tübingen klären hochaufgelöst die Struktur und Funktion von Zell-Zell-Verbindungen bei fädigen mehrzelligen Cyanobakterien auf. Damit können sie nun erklären, wie diese Mikroorganismen den Transport von verschiedenen Stoffen zwischen einzelnen Zel ... mehr

    Hirnstimulation gegen Stresserkrankungen?

    ETH-Forscher nutzen Stimulationen des Hirns, um die Folgen von Stress zu erforschen, aber auch, um neue Therapien dagegen zu entwickeln. Vielleicht wird es dereinst sogar möglich, Hirnerkrankungen ohne Pillen buchstäblich im Schlaf zu heilen. Auf dem Netz finden sich Videos, deren Inhalte s ... mehr

    Systeme stabil halten: Erstmals künstliches Gen-Netzwerk in lebende Zelle eingebaut

    Sowohl die Natur als auch die Technik sind auf integrierende Feedback-Mechanismen angewiesen. Sie sorgen dafür, dass Systeme stabil bleiben. ETH-Forscher haben nun mittels synthetischer Biologie einen solchen Mechanismus von Grund auf neuentwickelt und erstmals als künstliches Gen-Netzwerk ... mehr

  • Videos

    Kunstherz auf dem Prüfstand

    ETH-Forschende haben ein weiches Kunstherz aus Silikon entwickelt, das sich fast wie ein menschliches Herz bewegt. Produziert wurde das 390 Gramm schwere Silikonherz mit einem 3D-Drucker. mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.