Meine Merkliste
my.bionity.com  
Login  

Akustische Nanomotoren: Aktive Zelltransporter für den Cas9-sgRNA-Komplex mit Ultraschall-Antrieb

13.02.2018

© Wiley-VCH

Für die Krebsforschung ist der Komplex Cas9-sgRNA ein außerordentlich wirkungsvolles Instrument, um zum Beispiel Tumorgene gezielt zu verändern. Eine Hürde stellt derzeit noch die Aufgabe dar, den Komplex quantitativ und schnell durch die Zellmembran und zum Genom zu bringen. Amerikanische und dänische Wissenschaftler haben jetzt einen aktiven Nanomotor entwickelt, der das Genschneidesystem zielgerecht in der Zelle absetzt. Wie sie in der Zeitschrift Angewandte Chemie erläutern, erhält der Nanotransporter seinen Antrieb durch Ultraschall.

Die gezielte Veränderung von Genen gilt als hochinteressante Option für die Krebstherapie: Besonders, seit man kurz nach der Jahrtausendwende das adaptive bakterielle Immunabwehrsystem namens CRISPR und ihr Potenzial als Genschneidemaschinerie entdeckt hatte. Die heute benutzten CRISPR-Systeme zur Genveränderung setzten sich aus der „single-guide”-RNA oder sgRNA und dem Genschneideenzym der Cas-9-Nuklease zusammen. Während die sgRNA die Nuklease direkt zur gewünschten Gensequenz bringt, schneidet die Nuklease das Genom mit chirurgischer Effizienz. Schwierig ist dagegen noch der Transport dieser großen Maschinerie von außen in die Zelle und zum Zielgenom. In der Zeitschrift Angewandte Chemie schlagen Liangfang Zhang und Joseph Wang von der University of California in San Diego und ihre Kollegen jetzt als aktiven Transporter Ultraschall-angetriebene Gold-Nanodrähte vor. Diese sollen den Cas9-sgRNA-Komplex nicht nur über die Zellmembran transportieren, sondern ihn in der Zelle auch zielgenau freisetzen.

Gold-Nanodrähte können eine Membran zwar durch Diffusion passiv überwinden. Eine aktive Beschleunigung durch einfache Ultraschallbehandlung ist jedoch durch die gegebene Asymmetrie ebenfalls möglich, wie die Autoren darlegen. „Die asymmetrische Form des Gold-Nanodraht-Motors, die im Herstellungsprozess angelegt wird, ist wesentlich für den akustischen Vortrieb”, heißt es in ihrem Artikel. Den vollständigen Transporter setzten sie zusammen, indem sie den Cas-9-Protein/RNA-Komplex durch Sulfidbrücken am Gold-Nanodraht befestigten. Schwefelbindungen für die Verknüpfung von Motor und Ladung haben den Vorteil, dass diese Bindung in der Tumorzelle durch Glutathion wieder aufgebrochen wird. Dieses kleine Peptid kommt als natürliche reduzierende Substanz in Tumorzellen besonders häufig vor. Es löst die Bindung des Cas9-sgRNA-Komplex zum Transporter-Draht, und der freigesetzte Komplex kann im Genom seine Funktion ausüben, zum Beispiel ein Gen ausschalten.

In ihrem Testsystem beobachteten die Wissenschaftler die Ausschaltung der Fluoreszenz von B16F10-Melanomzellen mit exprimiertem grünen fluoreszierenden Protein. Eine fünfminütigen Ultraschallbehandlung reichte, um den Nanomotor mit dem Cas9-sgRNA-Komplex in die Zelle eindringen zu lassen. Die Fluoreszenz wurde schon bei winzigsten Konzentrationen des Schneidekomplexes durch die Genausschaltung schnell und effektiv ausgelöscht.

Ein akustischer Nanomotor als aktiver Transporter für die Gentherapie, und das bei geringsten Mengen an Schneideenzym, ist ein bemerkenswertes Ergebnis, das in die Zukunft weist. Eine weitere Errungenschaft ist dessen einfacher Aufbau aus wenigen, leicht erhältlichen Komponenten.

Fakten, Hintergründe, Dossiers
Mehr über UCSD
  • News

    Den (lebensbedrohlichen) Müll entsorgen

    Wissenschaftler wissen seit Jahrzehnten, dass bestimmte Bakterien kleine kugelförmige Versionen von sich selbst produzieren. Obwohl es ihnen an Basismaterialien fehlt, um sich zu vermehren oder wie normale Zellen zu funktionieren, ist das Interesse an solchen "Minizellen" in jüngster Zeit g ... mehr

    SMART: Gesichtserkennung für molekulare Strukturen

    Ein interdisziplinäres Forscherteam der University of California San Diego hat eine Methode entwickelt, mit der sich die molekularen Strukturen von Naturprodukten schneller und genauer als mit bisherigen Methoden identifizieren lassen. Die Methode funktioniert wie eine Gesichtserkennung für ... mehr

    Mikro-U-Boote für den Magen

    Winzige „U-Boote“, die eigenständig durch den Magen sausen, Magensäure als Treibstoff verwenden, diese dabei rasch neutralisieren, um dann ihre Fracht passgenau beim gewünschten pH-Wert freizusetzen: Was nach Science Fiction klingt, ist ein neuer Ansatz zur Behandlung von Magenerkrankungen ... mehr

  • Universitäten

    University of California, San Diego

    mehr

Mehr über Angewandte Chemie
  • News

    Antibakterielles Polymer

    Künstliche Polymere können nur dann antibiotisch wirken, wenn ihr Grundgerüst sowohl wasserabweisende als auch wasserlösliche Regionen enthält. Diese etablierte Modellvorstellung stellt jetzt eine Arbeit von kanadischen Forschern auf den Kopf: In ihrer Publikation in der Zeitschrift Angewan ... mehr

    Auf dem Weg zur personalisierten Medizin

    Ein paar wenige Zellen, die anders sind als der Rest, können große Auswirkungen haben. So können etwa einzelne Krebszellen einer Chemotherapie gegenüber unempfindlich sein und einen Rückfall bei eigentlich als geheilt geltenden Patienten verursachen. In der Zeitschrift Angewandte Chemie ste ... mehr

    Nano-Aggregation auf Befehl

    Eine Kombination aus natürlichen Mikrotubuli und künstlichen makrozyklischen Rezeptoren ermöglicht eine durch Licht gesteuerte, reversible Aggregation der Mikrotubuli zu größeren Nanostrukturen. Wie chinesische Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, können die aggre ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.